国内已有超过200个医疗大模型问世

中国医疗行业大模型的发展正处于快速上升期。截至2024年,国内已有超过200个医疗大模型问世,覆盖了从自然语言处理到机器视觉等多个技术分支,并在医疗领域展开了应用探索和实践。这些大模型不仅在辅助诊断、药物研发、健康管理等方面展现了显著价值,而且在提升医疗服务质量和效率、优化医疗资源配置、降低医疗成本等方面也发挥了重要作用。

国内科技巨头和初创企业纷纷布局医疗大模型领域。百度发布了“文心医疗”大模型,应用于疾病诊断和药物研发;阿里巴巴推出“阿里健康AI”,应用于医疗影像分析和辅助诊疗;腾讯发布了“腾讯觅影”,专注于肿瘤筛查和疾病预测;科大讯飞研发了“智医助理”,应用于智能问诊和健康管理……

据赛迪四川统计,截至2024年9月,我国共有超100家企业和机构发布了医疗健康产业大模型。企业占比达到81.3%,高校和研究机构占比分别为10.3%和5.6%,医院占比为2.8%。目前,中国医疗大模型市场规模为82亿元。医疗大模型在2024至2027年迎来快速发展期,预计到2027年我国医疗行业大模型市场规模将超过260亿元。

大型医疗机构也开始使用大模型来处理日常诊疗任务。通过自然语言处理技术实现智能导诊和病历书写自动化,利用深度学习算法提高医学影像识别的准确性,借助大数据分析技术预测疾病发展趋势,为患者提供个性化的健康管理建议。此外,大模型还在新药研发、遗传咨询、远程医疗服务等多个细分领域内实现了突破性进展。

医疗行业大模型依托于通用大模型的技术底座,通过医疗行业的特有知识和数据进行训练和微调,形成了符合医疗行业的特有大模型技术应用。主要涉及的行业技术有:

AI医疗影像分析:利用大模型技术进行医疗影像分析,如X光片、CT、MRI等,实现快速、准确识别病灶,辅助医生制定诊断和治疗方案。

AI精准医疗:基于强大的计算能力,AI大模型能快速完成海量基因数据的分析,挖掘并更新突变位点和疾病的潜在联系,提供更快速、更精确的疾病预测和分析结果。

教学和科研AI平台:通过人工智能大模型和虚拟现实技术,构造虚拟病人和虚拟空间,模拟患者沟通和手术解剖等医疗场景,辅助医学教学。

AI制药:以医药大数据为学习研究土壤,运用AI大模型技术参与制药过程,加速新药发现,降低研发成本。

未来,医疗行业大模型将持续演进,并更加深入地融入医疗服务体系:大模型将不断突破参数规模,融合多模态数据,实现更强大的理解和生成能力;大模型将应用于更多医疗场景,为患者提供更全面的医疗服务;医疗大模型将与医疗机构、医药企业、科技公司等形成更紧密的合作关系,共同构建完善的产业生态。

尽管医疗大模型的应用前景广阔,但行业发展仍面临一些挑战

一是医疗行业数据孤岛问题突出,数据质量参差不齐,影响大模型的训练和研发。

二是医疗大模型产品在商业化落地过程中面临谨慎和保守的行业态度,以及算力和私有化数据部署的成本和安全性问题。

应对挑战,专家建议可以采取以下策略:

加强数据共享与标准化:推动医疗行业数据共享机制建设,提高数据质量和标准化水平。

推动技术创新与合作:加强产学研合作,推动技术创新和应用落地,降低部署成本和提高安全性。

完善法规与伦理框架:建立健全医疗行业大模型的法规与伦理框架,保障患者隐私和数据安全。

医疗大模型正深刻改变医疗行业,通过提升诊断精度与速度、促进个性化治疗、加速药物研发及降低医疗成本等应用发挥重要作用。随着技术的不断进步和应用场景的拓展,医疗大模型将成为推动中国医疗健康产业转型升级、实现高质量发展的关键力量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 大规模模型的发展概述 自2020年以来,大规模预训练模型成为人工智能领域的重要研究方向之一。这些模型通常具有数十亿甚至数千亿参数,在自然语言处理、计算机视觉等多个方面取得了显著成果。 #### 国际上发布的大型模型 国际范围内,多个机构发布了多种超大尺寸的深度学习架构: - **GPT系列**:由OpenAI开发的一组基于Transformer结构的语言模型。其中GPT-3拥有约1750亿个参数,能够执行各种复杂的NLP任务[^1]。 - **PaLM (Pathways Language Model)**:谷歌推出的多模态巨型神经网络,具备超过5400亿个参数,不仅限于文本理解与生成,还支持图像识别等功能[^2]。 #### 国内发布的大型模型 在国内市场同样见证了众多高性能计算平台所支撑起的大规模模型问世: - **悟道·文源**:来自北京智源研究院的作品,该版本包含了高达十万亿级别的可调用参数量级,专注于中文环境下的语义解析能力提升[^3]。 - **通义千问**:阿里云自主研发的人工智能统一底座,提供强大的通用语言理解和生成服务,其背后依托着庞大的数据集以及先进的算法设计思路[^4]。 ```python # Python代码示例展示如何加载并使用一个预训练好的BERT模型来进行简单的问答任务 from transformers import BertForQuestionAnswering, BertTokenizerFast model_name = 'bert-large-uncased-whole-word-masking-finetuned-squad' tokenizer = BertTokenizerFast.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) def answer_question(question, context): inputs = tokenizer.encode_plus(question, context, return_tensors='pt') outputs = model(**inputs) start_scores = outputs.start_logits end_scores = outputs.end_logits all_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"].numpy()[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores): torch.argmax(end_scores)+1]) return answer.replace(' ##', '') context = "Deep learning is part of a broader family of machine learning methods based on artificial neural networks with representation learning." question = "What does deep learning rely on?" print(answer_question(question, context)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值