与智能体的组成不同,所谓的智能体表现模式,就是智能体呈现给大家的样子或者交互方式。智能体开发平台Dify里面,将智能体的类型分成了5种,但是我觉得这种分法很容易让初学者产生误解。
上图种的Agent竟然是应用类型,Agent不是智能体的英文名称吗?下图种工作流的节点也叫Agent??
Dify的插件分类中也有Agent?另外Dify中的工具和插件的区别是什么?
所以说,Dify产品虽然非常优秀,但是在我这种喜欢扣字眼的产品经理眼里,Dify对产品的功能组件的定义显得太过随意,大部分人只是时间长了,用习惯了,自然而然的接受了,但是对于初学智能体开发的人来说,理解这些功能将会非常痛苦。
经过对各种智能体的分析总结,智能体其实主要分为这么三类,下面给大家详细介绍一下。
(1)聊天助手类型
这种是最常见的智能体形态,腾讯混元、通义千问、DeepSeek 的网页聊天窗口其实就是智能体,也是普通用户使用大模型使用的入口,越来越多的功能挂载到这个入口,这个网页聊天窗口已经从最简单的聊天对话助手,变成了一个整合多模态能力的超级智能体。
聊天助手类型的主要有以下特点:
在Dify种,聊天助手类型的智能体,开发界面一般是这样的,如果这个智能体需要在对话时调用外部工具,则只需将工具添加进来就可以了。
(2)工作流类型
工作流类型的智能体更加复杂和强大,它允许用户设计一系列预定义的步骤,让智能体按照这些步骤自动执行任务。
工作流型Agent具备执行复杂任务的能力,通过集成外部工具、API和数据库实现更强大的功能。它们能够按照预设流程完成一系列操作,如自动化数据分析、文档处理或信息搜集。
工作流的本质是一个流程图或者说决策树。
在Dify中,工作流类型的智能体开发及效果通常是这样:
(3)对话流类型
对话流类型融合了聊天助手和工作流的特点,它通过预设的对话路径和决策树,引导用户完成特定目标。对话流l类型智能体是最高级的智能体形态,它结合了聊天助手的自然交互和工作流的任务执行能力。这类智能体能在对话中理解用户需求,动态规划并执行任务序列,同时保持上下文一致性。
代表性产品如Siri、Google Assistant等多轮对话系统,它们能够处理复杂意图解析,并通过多轮交互完成渐进式任务,为用户提供沉浸式智能体验。
在Dify中,对话流类型的智能体界面通常是这样:
智能体类型选择
不同类型的智能体各有特点,根据应用场景选择合适的类型可以提升效率和用户体验。以下是三种主要智能体类型及其应用建议。
以上就是智能体三种类型的主要内容,下节课我们将重点将围绕每种类型,讲解智能体的组成元素以及制作步骤。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。