智能体(Agent)的 3种表现类型:聊天助手、工作流与对话流

与智能体的组成不同,所谓的智能体表现模式,就是智能体呈现给大家的样子或者交互方式。智能体开发平台Dify里面,将智能体的类型分成了5种,但是我觉得这种分法很容易让初学者产生误解。

图片

上图种的Agent竟然是应用类型,Agent不是智能体的英文名称吗?下图种工作流的节点也叫Agent??

图片

Dify的插件分类中也有Agent?另外Dify中的工具和插件的区别是什么?

图片

所以说,Dify产品虽然非常优秀,但是在我这种喜欢扣字眼的产品经理眼里,Dify对产品的功能组件的定义显得太过随意,大部分人只是时间长了,用习惯了,自然而然的接受了,但是对于初学智能体开发的人来说,理解这些功能将会非常痛苦。

经过对各种智能体的分析总结,智能体其实主要分为这么三类,下面给大家详细介绍一下。

图片

(1)聊天助手类型

这种是最常见的智能体形态,腾讯混元、通义千问、DeepSeek 的网页聊天窗口其实就是智能体,也是普通用户使用大模型使用的入口,越来越多的功能挂载到这个入口,这个网页聊天窗口已经从最简单的聊天对话助手,变成了一个整合多模态能力的超级智能体。

图片

聊天助手类型的主要有以下特点:

图片

在Dify种,聊天助手类型的智能体,开发界面一般是这样的,如果这个智能体需要在对话时调用外部工具,则只需将工具添加进来就可以了。

图片

(2)工作流类型

工作流类型的智能体更加复杂和强大,它允许用户设计一系列预定义的步骤,让智能体按照这些步骤自动执行任务。

图片

工作流型Agent具备执行复杂任务的能力,通过集成外部工具、API和数据库实现更强大的功能。它们能够按照预设流程完成一系列操作,如自动化数据分析、文档处理或信息搜集。

图片

工作流的本质是一个流程图或者说决策树。

图片

在Dify中,工作流类型的智能体开发及效果通常是这样:

图片

(3)对话流类型

对话流类型融合了聊天助手和工作流的特点,它通过预设的对话路径和决策树,引导用户完成特定目标。对话流l类型智能体是最高级的智能体形态,它结合了聊天助手的自然交互和工作流的任务执行能力。这类智能体能在对话中理解用户需求,动态规划并执行任务序列,同时保持上下文一致性。

图片

代表性产品如Siri、Google Assistant等多轮对话系统,它们能够处理复杂意图解析,并通过多轮交互完成渐进式任务,为用户提供沉浸式智能体验。

图片

在Dify中,对话流类型的智能体界面通常是这样:

图片

图片

智能体类型选择

不同类型的智能体各有特点,根据应用场景选择合适的类型可以提升效率和用户体验。以下是三种主要智能体类型及其应用建议。

图片

以上就是智能体三种类型的主要内容,下节课我们将重点将围绕每种类型,讲解智能体的组成元素以及制作步骤。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

前 言 1 1 概 述 2 1.1 选题背景 2 1.2 组织结构 2 2 所用相关技术和方法 3 2.1 工作流 3 2.1.1 什么叫工作流 3 2.1.2 工作流发展 3 2.1.3 工作流的优点 3 2.2 MVC工作模式 4 2.2.1 MVC设计思想 4 2.2.2 MVC的具体实现 5 2.2.3 MVC的不足 6 2.3 JSP技术介绍 6 2.3.1 JSP的运行原理 7 2.3.2 JSP的生命周期 8 2.3.3 Servlet和JavaBean技术介绍 8 2.3.4 Java 虚拟机 9 2.3.5 JSP访问SQL Server 2000数据库 9 2.4 数据库后台环境配置 10 2.5 系统开发工具简介 10 2.5.1 Dreamweaver 10 2.5.2 MyEclipse 10 2.5.3 Tomcat 11 2.5.4 SQL Server2000 11 2.5.5 chs_sql2ksp3 12 3 系统需求分析 13 3.1 系统功能分析 13 3.2 系统性能分析 13 3.3 系统方案的确定和评价 13 4 系统总体设计 15 4.1 系统层次模块图 15 4.1.1 营业厅模块 15 4.1.2 收费管理模块 16 4.2 系统数据流程图 16 4.3 数据表设计 18 5 详细设计及编码 21 5.1 编写JAVABEAN 21 5.2 营业厅实现函数 21 5.3 收费厅主要的实现函数 22 5.4 JAVABEAN主要实现模块 22 5.4.1 中文字符格式的转换模块(Stringto.java) 22 5.4.2 自动生成验证码(Ran.java) 22 5.4.3 数据库的连接(ConnectionFactory.java) 23 5.4.4 数据库连接的关闭(DatabaseUtils.java)--只提供接口 23 5.4.5 密码修改模块(Common_fuction.java) 24 5.4.6 时间格式转换(timeBean.java) 24 5.4.7 数据统计(counthander.java) 25 5.4.8 营业厅的接口(luruaction.java) 27 5.4.9 营业厅的主要函数实现(luruhander.java) 28 5.4.10 收费厅的主要函数接口 32 5.5 管理员登陆模块 33 5.5.1 管理员登录 33 5.6 营业厅管理模块 36 5.6.1 Left.jsp页面 36 5.6.2 Work.jsp 40 5.6.3 customerlistinfo.jsp 41 5.6.4 allinfo.jsp 41 5.7 收费厅管理模块 42 5.7.1 Left.jsp 42 5.7.2 Work.jsp 43 5.7.3 Customerlistinfo.jsp 43 5.7.4 gongdan.jsp 43 6 系统测试维护 45 6.1 测试目的 45 6.2 测试环境 45 6.3 系统测试 45 6.4 系统维护 45 7 开发难点技术 46 7.1 主要程序实现的代码描述 46 7.1.1 验证码的自动生成 46 7.1.2 生成WORD工单 46 7.1.3 以一定的时间刷新页面 47 7.1.4 JSP中文问题的解决 47 7.2 在程序编码过程遇到的主要问题: 48 7.3 代码编写风格 49 7.4 我的不足: 49 结束语 50 致 谢 50
### 如何从零开始构建智能体 (Agent) #### 架构设计 构建智能体的核心在于定义其感知环境、处理输入并作出决策的能力。对于初学者来说,可以从较为简单的目标出发逐步增加复杂度。一个基本的智能体架构应该包括以下几个部分: - **感知模块**:负责接收来自外部世界的信号或数据流作为输入。 - **决策逻辑/算法**:依据接收到的信息执行特定的任务或是做出反应;这部分可以采用预设规则集、机器学习模型等方式实现。 - **行动接口**:用于将决定转化为实际操作指令发送给外界。 为了使上述组件能够协同工作,在设计初期就需要考虑好各个部件之间的通信机制以及整体系统的可扩展性和灵活性[^1]。 #### 实现方法 针对不同应用场景和技术栈的选择会有所不同,但对于Python程序员而言,以下是几种常见的实践路径: ##### 使用强化学习框架 通过引入像Stable Baselines3这样的开源工具包来简化RL(Reinforcement Learning, 强化学习)实验流程是一个不错的选择。它支持多种经典的RL算法,并提供了易于使用的API来进行环境配置和训练过程管理。 ```python from stable_baselines3 import PPO model = PPO('MlpPolicy', 'CartPole-v1') model.learn(total_timesteps=10_000) obs = env.reset() for i in range(1000): action, _states = model.predict(obs, deterministic=True) obs, rewards, dones, info = env.step(action) ``` ##### 利用对话式AI平台 如果目标是创建聊天机器人类型的智能代理,则Dialogflow CX 或Rasa等专为此类应用而优化的服务可能是更好的起点。这些服务通常内置了大量的自然语言理解(NLU)特性,可以帮助开发者更快地上手。 #### 入门教程推荐 考虑到新手可能缺乏相关背景知识,《Hands-On Intelligent Agents with OpenAI Gym》这本书籍提供了一个很好的入门指南,涵盖了从基础理论到具体案例分析的内容。此外,官方文档往往是最好的资源之一,无论是TensorFlow还是PyTorch都拥有详尽的教学材料帮助用户熟悉各自的生态系统[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值