看效果
首先,让我们看一下最终产品。假设有一个包含有关记录销售信息的样本 SQLite 数据库,允许以自然语言提出任何问题,然后程序:
- 基于问题生成 SQL
- 将结果显示为表格
- 将结果显示为图表
上代码
from vanna.remote import VannaDefault
from vanna.flask import VannaFlaskApp
vn = VannaDefault(model='chinook', api_key="your_vanna_api_key")
vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')
VannaFlaskApp(vn).run()
过程拆解
当然要让这个应用真正运行起来,你需要做如下工作:
- 准备 Python 环境(虚拟机)
- 安装必要的包
pip install vanna flask
- 注册 vanna 账号,并找到你的 API Key
- 输入你的邮箱
- 填写收到的验证码
- API Key 在这
当然你也可以尝试这样的方法,
#记得把my-email@example.com 替换为你的真实邮箱,用于接受验证码
api_key = vanna.get_api_key('my-email@example.com')
print(api_key)
vn = VannaDefault(model='chinook', api_key=api_key)
顺利的话,会有这样的提示,
Check your email for the code and enter it here:
输入收到的验证码,最好把 API Key 记录下来,下次直接使用 API Key,不然多次这样访问,可能会返回这样的报错,
requests.exceptions.SSLError: HTTPSConnectionPool(host='ask.vanna.ai', port=443):
Max retries exceeded with url: /unauthenticated_rpc (Caused by SSLError(SSLEOFError(8, '[SSL: UNEXPECTED_EOF_WHILE_READING]
EOF occurred in violation of protocol (_ssl.c:1002)')))
vanna
通过 RAG 使用 LLMs 进行准确的文本到 SQL 生成 ,创建你的数据库聊天机器人 。
RAG:检索增强生成(Retrieval-augmented generation,简称 RAG)是一种自然语言处理(NLP)技术,它结合了信息检索和文本生成的能力,旨在生成更准确和相关的文本。RAG 的核心思想是通过引入检索机制,使生成模型能够从外部数据源中检索信息,然后将该信息用于生成文本。
vanna 的特点:
- 开源
- 支持多种 LLMs
- 自学习,你可以持续训练你的模型
- 准确度高
- 支持多种数据库
- 默认支持 SQLite,Postgres,BigQuery 和 Snowflake
- 可以方便扩展数据库支持,比如我就轻松实现了 DuckDB 的支持
- 支持多种前端
- Jupyter Notebook[2]
- Slackbot[3]
- web app[4]
- Streamlit app[5]
最后放一张 DuckDB 的实现
从这张图可以看出,使用 DuckDB 可以方便分析各种 DuckDB 支持的数据源,如 SQLite,CSV,Excel,Parquet 等等。
Streamlit 版本
如果更喜欢 Streamlit,这里也把代码给你,
import vanna as vn
import streamlit as st
vn.set_api_key(st.secrets["vanna_api_key"])
vn.set_model('chinook')
vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')
my_question = st.session_state.get("my_question", default=None)
if my_question is None:
st.image("chinook-schema.png", use_column_width=True)
my_question = st.text_input("Ask me a question that I can turn into SQL", key="my_question")
else:
st.title(my_question)
sql = vn.generate_sql(my_question)
st.code(sql, language='sql')
df = vn.run_sql(sql)
st.dataframe(df, use_container_width=True)
fig = vn.get_plotly_figure(plotly_code=vn.generate_plotly_code(question=my_question, sql=sql, df=df), df=df)
st.plotly_chart(fig, use_container_width=True)
st.button("Ask another question", on_click=lambda: st.session_state.clear())
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。