随着科技的飞速发展,人工智能(AI)在医疗健康领域的应用越来越广泛,不断展现出其独特的价值和潜力。从医学影像分析到个性化医疗,从药物研发到智慧医疗,AI的新突破正在深刻地改变着我们的医疗体系。本文将通过实际案例,探讨AI在医疗健康领域的新进展及其所带来的深远影响。
一、医学影像分析中的AI新突破
医学影像分析是AI在医疗健康领域的一个重要应用方向。通过深度学习算法,AI可以自动识别和分析CT、MRI等医学影像数据,辅助医生进行准确的诊断。例如,腾讯推出的AI医学影像分析平台“觅影”,在肺结节、宫颈癌等疾病的诊断中取得了显著成效。该平台通过深度学习技术,能够在短时间内对大量影像数据进行处理和分析,准确识别出病变区域,并给出诊断建议。这一技术的应用,不仅提高了诊断的效率和准确性,也减轻了医生的工作负担。
二、个性化医疗中的AI应用
个性化医疗是AI在医疗健康领域的又一重要应用。通过AI技术,医生可以根据患者的基因、生活习惯等数据,为患者提供更加精准的治疗方案。以基因测序为例,美国一家名为23andMe的公司通过AI技术,对用户的基因数据进行深入分析,为用户提供个性化的健康管理和疾病预测服务。该公司利用AI算法,可以预测用户患上某种疾病的风险,并给出相应的预防建议。这种基于大数据和AI技术的个性化医疗模式,为医疗服务的精准化和个性化提供了有力支持。
三、药物研发中的AI新突破
药物研发是一个周期长、投入大的过程,而AI技术的应用则大大加速了药物研发的速度。通过机器学习算法,AI可以在海量的药物分子库中筛选出具有潜在药效的分子,并预测其药效和副作用。例如,英国一家名为BenevolentAI的公司利用AI技术,成功开发出一款新型药物,用于治疗一种罕见的遗传性疾病。该公司利用AI算法对大量的医学文献和药物数据进行分析和挖掘,找到了具有潜在疗效的药物分子,并通过临床试验验证了其有效性。这一成功案例充分展示了AI在药物研发中的巨大潜力。
四、智慧医疗中的AI应用案例
智慧医疗是AI在医疗健康领域中的又一重要应用。通过整合医疗资源、优化医疗服务流程,智慧医疗为患者提供了更加便捷、高效的医疗服务。以阿里巴巴旗下的阿里健康为例,该公司利用AI技术打造了一个智慧医疗平台,为患者提供在线咨询、药品购买、健康管理等服务。患者可以通过手机APP随时随地与医生进行在线交流,获取专业的医疗建议。同时,该平台还利用AI技术对药品进行智能推荐和管理,确保患者用药的安全和有效。这种基于AI技术的智慧医疗模式,不仅提高了医疗服务的效率和质量,也提升了患者的就医体验。
五、结语
通过以上案例可以看出,AI在医疗健康领域的应用已经取得了显著的成果和进展。从医学影像分析到个性化医疗,从药物研发到智慧医疗,AI的新突破正在深刻地改变着我们的医疗体系。未来随着AI技术的不断发展和完善相信其在医疗健康领域的应用将会更加广泛和深入为人类的健康事业做出更大的贡献。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。