一、推理算力的解决思路
根据基本思路的不同,推理算力可以做以下分类:
-
专精熟练工路线:
-
牺牲通用性换取高性能,如各类专用芯片、加速器型芯片
-
缺点:贵,无法支持新算法
-
人多力量大路线:
-
堆计算核心,高并发计算
-
缺点:核心间通信可能成为瓶颈, 编程复杂性增加
-
混合路线:
-
大小核设计,存算一体芯片等
-
缺点:设计和编程复杂,需要高效的任务调度和管理策略,可能有热管理问题
二、降低模型精度也是个办法
-
量化技术 (Quantization)
-
近似计算 (Approximate Computing)
两种用于提高AI模型推理速度的方法,它们通过减少计算复杂度来加快推理,同时在一定程度上牺牲模型的精度,比如图像处理、视频处理场景下就挺合适
特性 | 量化技术 | 近似计算 |
---|---|---|
定义 | 减少模型中数据的位宽 | 容许一定程度的计算误差以提高性能 |
目标 | 减小模型大小,加快推理速度 | 提升性能,可能降低能耗 |
实现方式 | 权重和激活值的低位表示 | 算法、硬件或系统级别的近似处理 |
精度影响 | 可能降低模型精度 | 可能影响结果的准确性和可靠性 |
硬件支持 | 需要支持低位宽运算的硬件 | 依赖于特定硬件的设计和实现 |
适用场景 | 深度学习模型部署,资源受限设备 | 对结果精度要求不严格的应用场景 |
代表性技术 | 权重量化、激活量化、混合量化 | 概率计算、随机计算、容错计算 |
三、推理芯片的技术路径及代表技术
芯片技术日新月异,每种类别的推理芯片都有其特定的优势和应用场景,选择合适的技术路径取决于目标应用的性能要求、能效目标、成本预算和开发时间等因素
类别 | 描述 | 代表技术或架构 |
---|---|---|
通用型推理芯片 | 适用于多种计算任务,不针对特定算法优化 | CPU, GPU |
专用型推理芯片(ASIC) | 针对特定算法或应用高度优化,提供最佳性能和能效 | Google TPU, Apple Neural Engine |
可编程推理芯片(FPGA) | 提供硬件级别的可编程性,允许快速适应不同的算法需求 | Xilinx, Intel FPGA |
加速器型推理芯片 | 专门为深度学习等计算密集型任务设计的加速器 | NVIDIA Tensor Core, Google Edge TPU |
混合型推理芯片 | 结合了不同类型的处理器,以优化多种计算任务 | AMD APU, Qualcomm Snapdragon |
基于新兴技术的推理芯片 | 利用最新的技术,可能提供更高的能效比或特定优势 | 存算一体芯片, Chiplet, 神经形态芯片 |
-
精简指令集路线的 ARM、RISC-V、龙芯等,在专用芯片以及多核处理器方面,有天然的成本优势
-
云厂商不会牺牲通用性,会持续购买英伟达、AMD、英特尔的芯片
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。