大模型之多模态检索

多模态,一种让大模型更加像人的技术

多模态是目前人工智能领域非常重要的一个研究方向,也可以说多模态是走向AGI(通用人工智能)的一种方式。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但从宏观来看多模态只是一种实现人工智能的方法论,其中有很多细分方向需要研究,比如多模态大模型,多模态检索等;然后不同领域还会涉及到不同的技术与难点。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

今天就来介绍一下多模态检索以及其技术问题和应用。

在这里插入图片描述

多模态检索

多模态检索是一个涉及多个数据模态(文本,图像,视频)的检索技术,旨在通过整合这些不同形式的数据,提供更全面和精确的检索结果。

以下从原理,技术和应用等多个方面详细介绍多模态检索:

原理

多模态检索的核心原理包括以下几个方面:‍

模态融合:将不同模态的数据结合起来进行检索,融合方法可以是早期融合(特征层面融合)或晚期融合(在决策层面融合)。‍‍‍

嵌入空间:通过将不同模态的数据映射到一个共同的嵌入空间,使得不同模态的数据可以在同一空间中进行比较和检索。这个嵌入空间可以使得在一个模态中的查询能够找到在其它模态中相关的内容。‍‍‍

特征共享:利用共享的特征表示(如联合特征向量)来进行检索,提升了跨模态匹配的准确性。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

技术

多模态检索技术可以从以下几个方面进行理解:

数据预处理

文本处理:包括分词,去停用词,词嵌入(如Word2Vec,GloVe,BERT等)‍‍‍‍‍‍‍‍‍‍‍‍‍

图像处理:包括缩放,裁剪,颜色标准化等,通常使用CNN提取特征‍‍‍‍‍‍

音频处理:包括声音分段,特征提取(如MFCC,图谱)等‍‍‍

视频处理:包括帧提取,时间序列建模等,使用3D CNN,LSTM等技术处理时空特征‍‍

在这里插入图片描述

特征提取与表示

文本特征:通过深度学习模型(如BERT,GPT)提取文本的上下文语义‍‍

图像特征:通过卷积神经网络提取图像的视觉特征‍‍

音频特征:利用声学模型(如CNN,RNN)提取音频的特征‍‍‍‍

视频特征:通过3D CNN或RNN捕捉视频中的时空动态特征‍‍‍‍‍‍‍‍

模态融合技术

早期融合:将不同模态的数据在特征层面进行融合,生成综合特征表示,常见的方法包括特征拼接,加权平均等‍‍‍‍‍‍‍

晚期融合:先分别处理各个模态的特征,然后在检索或决策阶段将这些结果进行合并。常见的方法包括投票机制,加权合并等‍‍‍‍‍‍

联合嵌入:将不同模态数据映射到一个共同的嵌入空间,通过优化算法(如对比损失函数)来保持模态间的一致性

‍‍‍‍‍‍

模型与算法

对比学习:通过对比不同模态的嵌入向量,使得相似内容在嵌入空间中更接近‍‍‍

生成对抗网络:用于生成和增强跨模态数据的特征表示

注意力机制:在模态融合中用于动态调整不同模态的权重‍‍

深度神经网络:包括多模态神经网络架构,如多模态Transformer等

在这里插入图片描述

应用

多模态检索技术具有广泛的应用场景:‍‍‍

图像与文本检索

图像搜索:用户上传一张图片,系统检索与该图像相关的文本描述或标签‍‍

文本到图像检索:用户输入一段文本,系统找到匹配该描述的图像

视频检索

视频内容检索:通过输入文字描述或语音查询,检索包含相关内容的视频片段‍‍

视频标签生成:自动为视频生成相关的文本标签,以便于检索和分类‍‍

多模态推荐系统

个性化推荐:基于用户的文本评论,点击行为,观看历史等多种数据提供推荐。例如,推荐电影,音乐和商品。‍‍‍‍

医疗诊断

影像与文本分析:结合医学图像(如X光片,CT扫码)和患者的文本记录进行诊断和病情分析‍‍‍‍‍‍‍

社交媒体分析‍‍‍

内容理解:分析社交媒体中的文本,图片和视频内容,提供更全面的情感分析,趋势识别等‍‍‍‍

_挑战与发展方向_‍‍

数据对齐与匹配‍‍

多模态对齐:如何有效对齐不同模态的数据,使得跨模态匹配更加准确

跨模态学习

跨模态迁移:如何在不同模态间迁移学习,提高系统在新模态下的表现‍

实时性与效率

处理大规模数据:需要处理和检索大规模的多模态数据,保证系统的实时响应能力‍‍‍

隐私与安全

数据隐私保护:在处理用户的多模态数据时,需要保护用户隐私和数据安全

总结

多模态检索技术通过整合不同形式的数据,提供了更加丰富和精准的检索能力。随着技术的不断进步和应用场景的拓展,多模态检索在实际应用中展现出巨大的潜力,同时也面临着一系列挑战,需要进一步的研究和技术突破。‍‍‍‍‍‍‍‍‍‍‍‍

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 多模态检索预训练模型介绍 多模态检索预训练模型是一种能够处理多种类型数据(如文本、图像、音频等)并从中提取有用信息的机器学习框架。这类模型通常利用无监督学习方法进行大规模训练,预训练数据来源于互联网上的大量多模态资源,例如网页、视频等内容,无需人工标注,因此具备优秀的扩展性和通用性[^1]。 #### 跨模态理解能力的学习 NLP(自然语言处理)和CV(计算机视觉)作为两种主要的数据形式,在信息表示上有显著差异。对于涉及这两种模式的任务来说,比如VQA(视觉问答)、VCR(视觉常识推理),则需要使不同类型的输入之间实现有效的对齐与交流。为此,多模态预训练旨在通过分析海量异构资料来掌握如何关联这些不同的感知维度,并最终应用于具体的场景之中[^3]。 #### 技术发展现状 近年来的技术革新使得此类模型得到了进一步改进,不仅提高了其逻辑推断水平,而且借助新的算法设计以及架构调整,在执行各类复杂的多媒体任务方面也展现出了更高的准确性。这表明当前的研究正在朝着更加高效的方向前进,同时也为实际应用场景提供了更好的支持[^2]。 ```python import torch from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") image = "path_to_image.jpg" text = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution over texts print(probs) ``` 这段Python代码展示了如何使用Hugging Face库中的CLIP模型来进行简单的图片到文字匹配操作,这是多模态检索的一个典型例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值