NeurIPS 2024 | 浙大提出Ex-MCR,参数高效的通用多模态统一表征构建范式

01.引言

多模态对比表征(Multi-model Contrastive Representations)学习的目的是在共享表征空间内对齐来自不同模态的输入。经典的“双塔模型”通过使用两个模态间的编码器将原始数据提取为表征向量并使用对比学习损失进行语义对齐。

近年来,三种以上模态的高质量对比表征越来越受到关注,并在多模态理和生成的许多应用场景中发挥着基础作用。但是现有的主流方法高度依赖于大规模、高质量的配对数据,以及昂贵的训练成本,这些限制了它们的进一步发展和应用。

此外,随着模态数量的增加,数据准备和模型训练的成本显著上升,这使得构建一个统一的多模态表征空间变得尤为困难。

最近,论文 C-MCR(Connecting Multi-model Contrastive Representations)引入了一种新的训练效率方法,用于通过从现有语义对齐空间中挖掘知识来学习缺乏配对数据的模态之间的对比表征。它通过重叠的模态将两个预训练的表征空间映射到一个新的共享空间。由于预训练空间的模态本质上是对齐的,从重叠模态中学习到的连接也可以转移到非重叠模态中。

在实验中,即使不使用原始的图像-音频和 3D-文本数据对,C-MCR 在图像-音频中也能达到领先的性能。

然而 C-MCR 主要侧重于学习两个非重叠模态之间的新空间,并不适合构建统一的表征空间,尤其是包括三个以上模态的空间。由于遗忘了强大的原始预训练空间中的模态对齐性,在进行更多模态的级联整合时,C-MCR 的性能将会显著下降。

Ex-MCR(Extending Multi-modal Contrastive Representations)正是我们为解决这些挑战而提出的。

论文标题:

Extending Multi-modal Contrastive Representations

论文地址:

https://arxiv.org/abs/2310.08884

Github地址:

https://github.com/MCR-PEFT/Ex-MCR

通过创新地使用“扩展(Extend)”而不是“连接(Connect)”操作,Ex-MCR 保存了基空间中所有的模态对齐性。同时,针对训练时对表征空间的刻画不充分、训练目标互相干涉、统一空间中模态联系不够紧密的问题,我们在数据、架构和优化目标上均进行了创新。

利用 Ex-MCR,我们可以在极低的训练成本和不使用原始配对数据的情况下灵活地整合多个表征空间来得到统一的表征空间。这一工作不仅为统一表征空间构建提供了新方向,也在跨模态生成和理解的未来应用中展现出巨大潜力。

02.实现细节:Ex-MCR的核心技术设计

为了解决目前在多模态统一表征空间构建上数据对齐性要求高、训练计算量大的挑战,我们提出了一中新的基于“扩展”的学习范式——Ex-MCR。它在模态可扩展性、训练灵活性和模态对齐性的保持上都获得了前所未有的能力。

1. “扩展”代替“连接”,保持基空间模态对齐性

对于两个对比学习表征空间,不同于 C-MCR 将两者映射到一个新的表征空间中,Ex-MCR 选取其中一个作为“基空间”而另一个空间作为“叶空间”,只将叶空间映射到基空间中。

由于基空间不进行任何映射,其中所有的模态对齐性得到了保留。因此,基空间可以与多个叶空间进行同样的“扩展”操作,使基空间内的模态不断得到扩充,从而构建起多模态统一表征空间。

2. 多“模态中心”的数据伪对构建,保证不同模态的原生语义信息

C-MCR 使用重叠模态的数据来检索语义相似的其他模态表征,并将这些检索得到的表征视为伪对。然而,事实上我们很难用一种模态完全表示另一种模态,由一种模态检索得到的表征往往忽略了其他模态的一些语义。例如,不发声对象,如蘑菇的表征很难在音频表征中找到对应,而不可见的物体如风声则往往在视觉表征中被其他的对象所干扰。

为了解决上述问题,我们提出了以多种模态为中心的数据检索策略。结合多个模态聚合的语义一致的表征,最终的嵌入可以更全面地反映不同模态各自表征空间。

3. 解耦的映射器,缓解不同训练目标之间的干涉

Ex-MCR 的主要网络结构是一个映射器,它有两个作用:1)弥合叶空间内的模态间隙,促进空间之间更稳定的对齐;2)学习将叶空间扩展到基空间的映射函数。考虑到这两种不同的优化目标,我们提出了一种解耦的投影器,以减轻不同优化目标之间的潜在冲突,并为这两种优化目标设计了更合理的映射层结构。

4. 密集对齐损失,充分刻画基空间的表征分布

由于 Ex-MCR 保留了完整的基空间,基空间内的模态间隙也同时被保留。因此,我们在 Ex-MCR 中设计了更鲁棒的学习目标来将叶空间映射到基空间中的适当位置:对于参与映射的所有模态对,我们都构建了一组 InfoNCE 对比学习损失函数。所有这些损失函数集合为最终的跨空间对齐目标。

03.实验验证:低训练成本下Ex-MCR融合多种空间的强对齐性

为了验证 Ex-MCR 在统一表征空间中的实际效果,我们在多个数据集上进行了广泛的实验,涵盖了语音重构、语义信息评估和消融研究。结果显示,Ex-MCR 展现了其卓越的灵活性、对齐质量和模态扩展能力。

我们使用 Zero-Shot 的音频-图像、音频-文本和图像-文本检索任务来评估 Ex-MCR 的音频-图像-文本表征。即使没有使用音频-图像配对数据,Ex-MCR-base 的性能也明显优于 WAV2CLIP 和 AudioCLIP,这说明了在高质量数据对有限的情况下,Ex-MCR 是一种更有效的表征学习方法。

此外,与 C-MCR 相比,Ex-MCR 不仅实现了更好的音频-图像对齐,而且从 CLAP 继承了更多的音频-文本对齐,充分保留了 CLIP 的图像-文本模态对齐,表明 Ex-MCR 在建立新空间和保持原有空间方面全面优于 C-MCR。Ex-MCR 由于不对基空间进行任何修改,因此可以和数据驱动方法正交地并行使用。

我们惊喜地发现,当并行使用 Ex-MCR 和数据驱动方法如(ImageBind),只需很少的额外成本,就可以相互补充,实现最先进的统一音频-图像-文本表征。

同样在 3D-图像-文本表征上,我们也取得了类似的领先结果。

我们同时也考察了两个叶空间之间的模态在 Ex-MCR 所构建的统一表征空间中的对齐性。我们使用 Ex-MCR,将 ULIP 和 CLAP 都扩展到同一个 CLIP 空间上,然后通过这 3D 和音频两种模态表征的互相检索,我们得到了如下的检索结果:

这说明 Ex-MCR 所构建的是一个各种表征对齐性都足够强的统一的对比学习表征空间。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值