笔记整理:陈少凯,浙江大学硕士生,研究方向为知识图谱、RAG
论文链接:https://arxiv.org/pdf/2405.14831
1. 动机
虽然近年来大语言模型(LLM)的研究取得了很大进展,但持续更新的长时记忆在当前的人工智能系统中仍然有明显缺陷。检索增强生成(RAG)已经成为LLMs长时记忆的解决方案,然而,当前的RAG方法仍不能帮助LLM执行需要跨段落边界集成新知识的任务,因为每个新段落都是孤立编码的。
许多重要的现实世界任务,例如科学文献综述、医学诊断等任务,需要跨段落或文档的知识集成。为了解决此类任务,当前的RAG系统采取迭代地使用多个检索和LLM生成步骤来连接不同的段落。相比之下,人脑能够相对轻松地解决这些具有挑战性的知识整合任务。
2. 贡献
本文的核心贡献主要如下:
(1)首先,提出了一种RAG框架HippoRAG,通过模仿人类记忆来作为LLM的长期记忆。
(2)其次,HippoRAG协同LLM、知识图谱和个性化PageRank算法,以模拟新皮质和海马体在人类记忆中的不同作用。
(3)最后,HippoRAG在多跳问答任务中优于现有的RAG方法,使用HippoRAG的单步检索实现了与IRCoT等迭代检索相当或更好的性能。
3. 方法
模型的整体架构如下:
主要分为两个阶段,具体如下:
(1)离线索引阶段:索引阶段类似于记忆编码的过程,包括使用指令微调的LLM和检索编码器来处理一组段落。具体来说,从每个段落中提取一组命名实体,然后将命名实体添加到OpenIE提示符中,以提取最后的三元组。
(2)在线检索阶段:检索阶段类似于人脑的记忆检索过程,这三个相同的组件然后被用来通过镜像人脑的记忆检索过程来执行在线检索。正如海马体接收通过新皮层和PHR处理的输入一样,我们的基于LLM的新皮层从查询中提取一组查询命名实体。然后,这些命名实体根据检索编码器确定的相似性链接到KG中的节点;我们将这些选定的节点称为查询节点。一旦查询节点被选中,它们就成为我们的合成海马体执行模式完成的部分线索。在海马体中,海马指数元素之间的神经通路使相关的邻近区域被激活并被上游召回。为了模仿这种高效的图搜索过程,我们利用了个性化PageRank算法,汇总先前索引的段落的输出PPR节点概率,并使用该概率对它们进行检索排序。
4. 实验
该实验主要在两个多跳QA benchmark(MusiQue和2WikiMultiHopQA)以及HotpotQA数据集上评估HippoRAG的检索能力;为了限制实验成本,从每个验证集中提取了1000个问题,三个数据集的具体信息如下所示:
单步检索性能比较:
多步检索性能比较:
消融实验(不同抽取方法):
5. 总结
本文提出的神经生物学原理的方法HippoRAG,虽然简单,已经显示出克服标准RAG系统的固有局限性,同时保留其参数记忆的优势。HippoRAG的知识集成能力,为LLM的长时记忆提供了可信的解决方案。然而,在未来的工作中可以解决目前工作的一些限制,使HippoRAG能更好地实现这一目标,比如通过执行特定组件微调来提高本方法的实际可行性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。