我们今天继续回到R1在后续模型训练上的一些尝试。之前说过很多R1用在多模态领域的工作,核心就是把多模态的数据进行文本化,然后蒸馏R1的推理路径做微调,或者在强化阶段引入一些个非文本模态的奖励,如IOU奖励。
这次来说说用在垂直领域。现在这块的趋势,像极了23年清一色的领域微调模型一样,当时的路线是继续预训练(continue pretain)+微调(SFT),或者直接微调(SFT),这里的SFT大多是构造问题,然后蒸馏GTP4等强模型的答案,构成二元组数据(question, answer)。
R1出来之后,模式就变成了SFT(监督微调)、RL(强化学习)或两者的组合。但是这里的微调(SFT)使用的答案,从之前的答案,变成了加入思考轨迹的三元组,即(question, think, answer),被蒸馏对象变成了DeepseekR1或者GPT4-O1等。然后强化学习变成了GROP(大多都是准确性奖励和格式正确奖励两种)。
这种范式下,也逐步会出现一些行业R1模型的实践工作,换个数据集把流程走一遍,产出一些实验报告,这也是最近多模态R1以及一些声称做了一些行业R1工作的底裤。
本文来讲讲最近的一个具体工作。
一、再看行业R1模型构建路线,以Fin-R1为例
行业R1如何做,蒸馏行业R1推理数据微+GRPO下。
因此,就有了一些工作,例如用在金融行业。《Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning》,https://arxiv.org/pdf/2503.16252,结论没有实用意义,金融计算问题,正是大模型短板,且用7B,也没有实际说服力,测试任务也很简单,就是上述方式用金融领域的数据套着做了一遍,但也可以作为再加深下印象来看。
工作的Github地址崽,https://github.com/SUFE-AIFLM-Lab/Fin-R1,模型地址在https://huggingface.co/SUFE-AIFLM-Lab/Fin-R1。
核心看2点,三张图。
一个是数据怎么做?
数据集包括60,091条条目,涵盖中英双语的金融内容。数据集分为开源数据集和专有数据集。开源数据集包括Ant_Finance、FinanceIQ、Quant-Trading-Instruct等,专有数据集为金融研究生入学考试题(FinPEE)。
数据处理包括数据蒸馏和数据过滤。在蒸馏阶段,参数配置与官方DeepSeek-R1规范对齐,温度设置为0.6,数学数据使用标准化提示以确保答案格式一致。在过滤阶段,采用Qwen2.5-72B-Instruct作为判断模型,通过七维评估标准(内部一致性、术语重叠率、推理步骤数、逻辑连贯性、内容多样性、任务域相关性和与任务指令的对齐)筛选高质量的推理轨迹。
一个是具体怎么做的训练?
两个阶段,监督微调(SFT)阶段,使用Fin-R1-Data对Qwen2.5-7B-Instruct进行微调,SFT训练数据由ConvFinQA和FinQA数据集组成,每个样本包含问题、推理轨迹和答案。强化学习(RL)阶段,采用组相对策略优化(GRPO)算法,双重奖励机制包括格式奖励和准确性奖励。
二、减少推理大模型过度思考的技术方案总结
关于推理模型过度思考的工作,我们也讲过许多了,其虽然提高了性能,但也带来了显著的计算开销,导致“过度思考”现象,具象化理解起来就是,LLMs生成过于详细或不必要的推理步骤,从而降低了解决问题的效率,这种现象在参数规模较小的模型中尤为明显。
如下,“过度思考现象”的一个例子:当推理模型被问及“0.9和0.11,哪个更大?”时,QwQ-32B 花费了19秒,DeepSeek-R1花费了42秒才给出最终答案。
可以继续温习一下,来看一个技术总结,《Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models》,https://arxiv.org/pdf/2503.16419,https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs,收集了一些代表性的工作。
核心就三个方向:基于模型的高效推理,考虑优化全长推理模型为更简洁的推理模型或直接训练高效推理模型;基于推理输出的高效推理,旨在推理过程中动态减少推理步骤和长度;基于输入提示的高效推理,寻求根据输入提示属性如难度或长度控制来提升推理效率。 具体看怎么做?
对于基于模型的高效推理model-based,2个角度:
一个是RL与长度奖励设计,通过在强化学习框架中引入长度奖励来缩短推理过程。具体方法包括使用PPO算法和Cosine Reward等。
一个是SFT与可变长度CoT数据,通过使用可变长度的CoT数据集来优化推理效率。方法包括自训练、TokenSkip、C3oT等。
对于基于推理输出的高效推理reasoning output-based,2个角度:
一个是压缩推理步骤到更少的潜在表示,通过将推理步骤压缩为更少的潜在表示来提高效率。方法包括Coconut、CODI、CCOT等。
一个是动态推理, 在推理过程中选择适当的准则来指导推理策略。方法包括基于奖励的推理、基于置信度的自适应推理、基于一致性的选择性推理等。
对于**基于输入提示的高效推理 input prompts-based **,两个角度:
一个是提示引导的高效推理,通过明确的提示指令来控制推理长度。方法包括设置token预算、使用简洁的提示等。
一个是提示推理路由,根据输入提示的复杂性动态确定语言模型处理查询的方式。方法包括使用分类器训练查询路由器、基于不确定性的自我路由等。
这个工作也谈到了几个有趣的话题,包括:如何将推理步骤压缩到潜在空间?在推理过程中应该使用哪种标准来指导推理策略?如何准确地控制LLMs的推理长度?如何构建少但高质量的训练数据?小模型在推理任务中的表现如何?模型压缩(如量化)对其推理能力有何影响?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。