一文读懂大模型生态系统:AGI、Prompt、RAG、Agent

每次与AI圈内人士聊天,总会听到这些术语:“AGI、Prompt、RAG、Agent、...”。

你听说过这些术语,却不一定搞懂它们到底是什么,它们之间又有什么关系?

今天,我们就用最通俗的语言,帮你理清这些概念,看懂大模型智能生态系统的全貌。

img

大模型智能生态:从"大脑"到"全身"

大模型就像人工智能的大脑。

它通过海量文本数据训练,能够理解语言、回答问题、生成内容

从GPT到Claude再到DeepSeek,这些模型以其惊人的参数规模和智能表现,正在改变人们与计算机交互的方式。

img

大模型最核心的能力是推理

它能够基于已有知识进行逻辑分析、因果推断和创意思考。此外,大模型还具备强大的in-context learning能力,能通过上下文快速学习新任务,不需要额外训练。

从技术角度看,大模型就像飞机引擎,而整个AI应用则如同完整的飞机。

要把引擎变成能飞的飞机,我们需要机翼、机身、驾驶舱等一系列组件。同样,围绕大模型,也形成了一个完整的技术生态,每一个组件都有其特定作用。

大模型生态系统:每一环都至关重要

Prompt与RAG:智能交流的入口

Prompt(提示词工程)是与大模型交流的艺术

img

好比与人交谈,你怎么提问决定了能得到什么答案。高质量的Prompt能激发大模型的最佳表现,引导它用正确的方式思考和回应。

这是最原始也最直接的交互方式,无需复杂的技术处理,但精心设计的Prompt往往能产生惊人的效果。

RAG(检索增强生成)则是给大模型装上外部记忆

大模型虽然强大,但它的知识仅限于训练数据。RAG允许模型实时从外部数据源检索信息,然后结合这些信息生成回答。如果大模型可以查阅最新的医学期刊或公司内部文档,它的回答将更加精准和实用。

在技术实现上,RAG结合了Embeddings(向量编码)与向量数据库

文本通过向量编码转换为数字形式存储在向量数据库中,当接收用户问题时,系统找出最相似的知识片段,然后结合这些片段与大模型的能力,为用户提供更准确的回答。

函数调用与Agent:从思考到行动

img

函数调用(Function Calling)为大模型提供了执行特定任务的能力。当大模型识别到需要调用外部功能时,它可以生成符合特定格式的输出,触发预定义的函数。

这就像人类决定使用电脑上的某个应用程序完成特定任务。例如,当用户询问"北京明天天气如何",模型可以识别这是天气查询需求,自动调用天气API获取数据并返回结果。

Agent(智能体)则更进一步,它是能够独立思考并与环境交互的实体。Agent建立在大模型的推理能力基础上,遵循"观察-规划-行动"循环。

它不仅能执行单一任务,还能规划一系列步骤解决复杂问题,并根据执行结果调整计划。

一个Agent智能体可能会调用多个函数来完成目标。如果把函数调用比作单个工具的使用,Agent就像一个有能力选择正确工具并按正确顺序使用的熟练工匠。

知识存储与表示:AI的记忆与思维方式

知识库是AI应用的信息基础

特别是对企业来说,构建符合业务需求的知识库至关重要。它让通用大模型转变为深入理解特定行业的"专家"。

在技术实现上,知识库通常包含两个关键环节:离线的知识数据向量化和在线的知识检索生成

向量数据库是存储和查询文本向量表示的专门系统

与传统数据库不同,它特别适合处理非结构化数据,如文本、图像和音频。其卓越的高维数据存储和检索能力,使其成为现代AI系统的关键组件。事实上,知识库的存储载体往往就是向量数据库。

知识图谱则是用图结构表示知识的数据库,通过实体和关系构建知识网络

它揭示知识领域的动态发展规律,适用于医疗、推荐系统等多个领域。如果说向量数据库是AI的"记忆库",知识图谱就是AI的"思维地图",帮助AI理解复杂的概念关系。

AGI:技术融合的终极目标

AGI(通用人工智能)是AI发展的终极愿景

与现在专注于特定任务的"窄人工智能"不同,AGI能够处理多种不同的问题,展现出类似人类的通用智能。

AGI的关键特征包括:

  • 跨领域通用能力:不限于单一任务或领域
  • 自主学习:从经验中学习并不断改进
  • 理解复杂概念:处理抽象概念、隐喻和复杂逻辑
  • 适应性思维:面对新环境能够灵活应对

目前,AGI仍是前沿研究领域,尚未完全实现。

大模型、RAG、函数调用、Agent等技术的发展和融合,正在为AGI的实现铺平道路

智能生态:系统思考与融合应用

img

回顾这些技术概念,它们不是孤立存在的,而是相互补充、协同工作的系统

大模型是智能生态的大脑,提供基础推理能力;Prompt是与大模型沟通的语言;RAG为大模型提供外部知识;函数调用赋予大模型执行特定操作的能力;Agent让大模型能够主动规划和行动;知识库、向量数据库和知识图谱则为整个生态提供结构化的知识支持。

当我们思考这些技术时,不应将它们视为竞争关系,而是互补关系。每项技术都有其特定场景和优势,正是它们的组合应用,才能发挥最大价值。

例如,结合RAG提供最新知识,Agent规划复杂任务,函数调用执行具体操作,我们可以构建出既智能又实用的AI应用。

从企业应用角度看,了解这些技术并非为了选择其中一个,而是理解如何将它们整合到自己的业务场景中。

金融企业可能更关注知识图谱来处理复杂的金融关系;制造业可能更需要Agent来控制生产流程;内容创作者则可能专注于优化Prompt技巧。

当这些技术元素在多样化的形态中相互协作,它们共同推动AI技术持续向前发展,逐步接近AGI的愿景。这不仅是技术的进步,更代表着人类智能与机器智能的深度融合,开启全新的可能性!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值