Content
论文链接:[2406.11903] A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges (arxiv.org)
https://arxiv.org/abs/2406.11903
本文作者来自普林斯顿和牛津大学。论文全面探讨了大语言模型(LLMs)在金融领域的应用,包括它们的进步、前景和挑战。
1. 引言 (Introduction)
引言介绍了金融领域的复杂性和技术融合的重要性,并强调了大型语言模型(LLMs)在金融领域应用的潜力和优势。同时,它概述了LLMs在金融分析中的多种用途,如情感分析、时间序列预测和金融推理,并指出了在金融领域应用LLMs时面临的挑战,如数据问题、建模问题、基准测试和伦理问题。此外,引言部分还回顾了相关研究,指出了现有文献的不足,并提出了本研究旨在填补的空白,即提供对金融领域LLMs应用的全面审视,并为未来的研究和实践提供指导。
2. 模型 (Models)
本章深入探讨了大型语言模型(LLMs)在金融领域的应用,包括模型的分类、优势、以及它们如何适应金融任务的特定需求
2.1 模型集合 (Collections of Models)
-
本章介绍了几种主要的通用和金融领域特定的大型语言模型。例如,GPT系列模型以其自注意力机制和位置嵌入捕捉文本中的长距离依赖性而闻名。Ploutos是基于GPT-4的金融LLM框架,它通过整合多模态数据和历史股票数据来提高预测的准确性和可解释性。
-
BERT模型通过其深度双向架构,能够学习上下文表示,从而在金融文本上进行了持续预训练,产生了如FinBERT-19、FinBERT-20和FinBERT-21等金融领域特定变体。这些模型通过在金融语料库上的预训练,增强了对金融文本的情感分析能力。
-
T5模型,即Text-to-Text Transfer Transformer,是一个统一框架,将所有文本处理任务视为“文本到文本”的问题。BBT-FinT5是为中国市场定制的T5变体,它结合了知识增强的预训练方法。
-
ELECTRA模型引入了生成器-鉴别器框架,用于预训练语言模型。FLANG是基于ELECTRA的金融领域变体,它通过选择性标记掩蔽和跨度边界目标来处理金融语言的复杂性。
-
BLOOM是一个基础的多语言LLM,支持多种语言。BloombergGPT和XuanYuan 2.0是从BLOOM衍生出来的,专注于金融应用的模型。
-
Llama系列模型提供了不同大小的灵活性,并且在大多数基准测试中表现优于更大的模型。Llama的金融变体,如FinMA、Fin-Llama、Cornucopia – Chinese等,为各种金融任务提供了专业能力
2.2 零样本学习与微调 (Zero-shot vs Fine-tuning)
- 本章讨论了LLMs在应用中的两种不同适应方法:零样本学习和微调。零样本学习允许模型基于其现有的知识和泛化能力来预测或执行未明确训练的任务。微调则是在特定数据集或特定任务上调整预训练模型以提高其准确性和性能。论文还介绍了一些提高微调效率的技术,如指令调整、低秩适应(LoRA)和量化LLMs。
2.3 为什么在金融中应用LLMs (Why Applying LLMs in Finance)
-
这部分深入探讨了在金融分析中应用LLMs的原因,强调了它们在金融领域的一般和特定优势。LLMs在理解复杂的金融术语、行话和细微表达方面具有先进的上下文理解能力。它们在预训练阶段就对大量互联网文本进行了学习,这为它们提供了广泛的语言理解能力,可以针对特定的金融任务进行微调,减少了对大型领域特定数据集的依赖。
-
LLMs还表现出可扩展性,能够快速处理大量文本,为金融决策者提供即时洞见。此外,LLMs的多模态能力使它们能够整合各种数据源,如新闻文章的文本、财务报表的数字数据和市场图表的视觉数据。LLMs的可解释性也为金融应用中的透明度和信任度提供了增强。
-
最后,LLMs的定制化能力使它们能够适应特定的金融工具或市场条件,通过整合领域特定数据和参数,LLMs可以被训练以专注于金融市场的特定方面
3. 应用 (Applications)
本章通过深入分析LLMs在金融领域的各种应用,展示了它们如何转变金融分析的实践,并提供了对未来研究方向的见解。这些应用不仅覆盖了金融分析的传统领域,还探索了新兴的领域,如基于代理的建模和实时金融推理,为金融领域的创新提供了新的机会
3.1 语言任务 (Linguistic Tasks)
LLMs在金融领域的语言任务中扮演着重要角色,特别是在处理大量金融文档和报告时。这些任务包括文本摘要、信息提取、文档结构处理和命名实体识别。
-
文本摘要与信息提取:LLMs能够将长篇金融文档压缩成简洁的摘要,同时保留关键信息。研究者通过分割文档、使用特定模型或结构化元素来提高处理长文本的效率。
-
管理多样化的文档结构:LLMs处理包含图像、图表和表格的PDF文件时面临挑战。解决方案包括将PDF转换为文本或使用布局感知模型来理解文档中的空间布局。
-
命名实体识别 (NER):在金融领域中,NER用于从文本中提取公司名称、股票符号、财务指标等实体。LLMs通过预训练知识增强了在复杂金融文本中识别实体的准确性和效率。
3.2 情感分析 (Sentiment Analysis)
情感分析是金融领域中的一项关键任务,它涉及对文本数据中表达的意见、情感、主观性和情绪的量化探索。LLMs在此领域的应用包括:
-
社交媒体和新闻:LLMs能够分析社交媒体和新闻中的公众情绪,这些情绪可能预测市场动向。
-
公司披露:通过分析公司财报电话会议和官方声明中的情感,LLMs可以揭示影响投资者决策和管理市场感知的潜在情绪。
-
市场研究报告和政策经济指标:LLMs也被用于分析政策文件和经济指标报告中的情感,以指导投资决策。
3.3 金融时间序列分析 (Financial Time Series Analysis)
LLMs在金融时间序列分析中的应用包括预测市场趋势、检测异常和分类金融数据。
-
预测:LLMs直接用于股票市场和其他金融指标的预测,通过整合多种数据源提供稳健的预测。
-
异常检测:LLMs能够识别金融时间序列中的异常模式或离群值,对于风险管理和欺诈检测至关重要。
-
数据增强和插补:LLMs通过生成合成数据来增强现有数据集,或填补缺失的数据点,以提高模型的鲁棒性。
3.4 金融推理 (Financial Reasoning)
LLMs支持金融推理,包括战略规划、投资建议、决策支持和实时推理。
-
规划:LLMs分析市场趋势和竞争数据,帮助组织制定商业策略和财务规划。
-
推荐:LLMs提供基于个人风险偏好和市场条件的个性化投资建议。
-
支持决策:LLMs通过监控市场趋势和新闻,提供及时的更新和警报,帮助用户调整策略。
-
实时推理:LLMs提供即时和动态的交互,通过聊天机器人和虚拟助手提供准确、相关和及时的信息。
3.5 基于代理的建模 (Agent-based Modeling)
基于代理的建模(ABM)是一种模拟复杂系统的方法,特别是在金融领域中。LLMs与ABM的结合为市场和经济活动的模拟提供了新的视角。
-
交易和投资:LLMs增强的交易代理能够处理大量数据并执行高精度交易,提供个性化的投资策略和洞察。
-
模拟市场和经济活动:LLMs增强的ABM能够模拟复杂的宏观经济活动,提供对不同经济因素相互作用的深入理解。
-
自动化金融流程:LLMs集成到金融流程中,自动化工作流程生成和战略规划。
-
多代理系统:多代理系统利用LLMs提高金融策略的稳健性和准确性,模拟各种代理之间的互动。
3.6 其他应用 (Other Applications)
LLMs在金融领域的其他应用包括云计算集成、自动化客户服务、合规性检查等。
4. 数据集、代码和基准 (Datasets, Code and Benchmark)
4.1 数据集 (Datasets)
-
第四章首先介绍了多种金融领域的数据集,这些数据集对于训练和评估特定金融任务的模型至关重要。包括情感分析、问题回答、关系提取和数值推理等任务。
-
特别提到了Financial PhraseBank (FPB)、Financial Question Answering and Opinion Mining (FiQA)、FinQA等数据集,它们分别用于金融情感分析、基于方面的情感分析和金融数据的数值推理。
4.2 基准和代码 (Benchmarks and Code)
-
基准测试对于评估LLMs在金融领域的表现至关重要,它们提供了标准化的度量,确保了金融文本理解和预测的可靠性和准确性。
-
FLUE(Financial Language Understanding Evaluation)是一个全面的基准测试套件,设计用于评估语言模型在各种金融NLP任务上的性能。
-
论文还介绍了FLANG-BERT和FLANG-ELECTRA,这两种模型专门针对金融数据进行了训练,并采用了新颖的预训练方法。
5. 挑战和机遇 (Challenges and Opportunities)
-
数据问题:LLMs在处理高维金融数据时存在挑战,数据污染和信号衰减问题可能影响模型性能。需要研究混合模型和特定领域的预训练策略来提升对金融时间序列的理解。
-
建模问题:LLMs的高计算需求导致推理速度慢和成本高。未来前瞻偏差和幻觉问题在金融回测中需被严格控制。此外,LLMs生成内容的不确定性估计对于金融决策至关重要。
-
基准测试:现有基准可能不适合评估LLMs生成的交易信号,需要开发新的基准来适应市场变化。
-
伦理问题:LLMs的输出需要符合社会价值观和法律规范,避免产生有害建议。随着LLMs在金融决策中的作用日益增强,法律责任和问责问题变得重要。数据安全和隐私保护也是关键挑战。同时,理解LLMs开发和应用背后的动机对于确保其符合伦理标准至关重要。
6. 结论 (Conclusion)
本文了LLMs在金融领域应用的综合概况,强调了它们在提升金融任务效率和准确性方面的潜力。同时,指出了需要解决的挑战,如数据隐私、可解释性和计算成本,以确保LLMs在金融中的负责任和有效部署。最后,论文期望能够激发对LLMs潜力和局限性的进一步探索,推动它们在金融行业的整合,以实现更战略性投资和高效决策。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。