前言
RAG现在工作很多,进化的也很快,再来看看一个新的RAG工作-MemoRAG。
文章提出,RAG在减少大模型对于垂类知识的问答幻觉上取得了不错的效果,也成为私域知识问答的一种范式。然而,传统RAG系统主要适用于明确信息需求的问答任务,但在处理涉及模糊信息需求或非结构化知识的复杂任务时表现不佳。因为,现实世界中的许多问题信息需求是模糊的,外部知识是非结构化的,例如理解书籍中主要角色之间的相互关系。
因此,研究难点在于:
-
如何有效处理模糊的信息需求
-
如何从非结构化知识中提取有用信息
-
如何在长文本上下文中进行有效的信息检索和生成
本文介绍的MemoRAG,一种基于长期记忆的检索增强生成新范式。
方法
MemoRAG
-
传统RAG
这里, 表示最终答案, 表示输入查询,表示从相关数据库 中检索到的上下文, 和 分别表示生成模型和检索模型, 和 表示模型参数。
-
MemoRAG:MemoRAG提出了一个双系统架构,采用了一个轻量级但长上下文的LLM来形成数据库的全局记忆,并在任务呈现时生成草稿答案,提示检索工具在数据库中定位有用信息。另一方面,它利用一个能力较强的LLM,根据检索到的信息生成最终答案。
MemoRAG的核心是引入了一个记忆模块:
记忆模型的作用:记忆模型 的设计目的是建立数据库 的全局记忆,并生成有助于检索的线索 。
记忆模型选型:任何能够有效处理超长上下文的语言模型都可以作为记忆模型。文章也实现了两个记忆模型(memorag-qwen2-7b-inst和memoragmistral-7b-inst)。
-
表示由记忆模型 生成的中间答案,用作检索线索。
-
这个中间答案 帮助检索模型 从数据库 中检索最相关的上下文 。
记忆模块设计
-
输入
输入序列 X 包含 n 个标记,表示为
-
标注注意力机制
-
短期记忆到长期记忆的转换 为了将短期记忆转换为长期记忆,引入了记忆标记 作为LLMs中长期记忆的信息载体。假设底层LLM 的工作上下文窗口长度为 ,在每个上下文窗口后,附加 个记忆标记:
新的注意力变成:
通过多个注意力过程,原始标记被编码成隐藏状态 ,其中 表示原始标记的隐藏状态, 表示记忆标记的隐藏状态。
-
记忆模块训练:
-
训练过程
记忆模块的训练分为两个阶段:
-
预训练:使用来自RedPajama数据集的随机抽样长上下文对模型进行预训练,使记忆模块能够从原始上下文中学习如何形成记忆。
-
指令微调(SFT):使用特定任务的SFT数据,使MemoRAG能够基于形成的记忆生成特定任务的线索。
-
训练目标
这个公式表示训练过程中的目标是最大化给定先前记忆标记 和最近原始标记 的情况下,下一个标记 的生成概率。
通过这种设计,记忆模块能够有效地将大量原始上下文压缩成少量的记忆标记,同时保留关键的语义信息,从而在处理长上下文和高层次查询时提供显著的优势。
基本使用
from memorag import MemoRAG # Initialize MemoRAG pipeline pipe = MemoRAG( mem_model_name_or_path="TommyChien/memorag-mistral-7b-inst", ret_model_name_or_path="BAAI/bge-m3", gen_model_name_or_path="mistralai/Mistral-7B-Instruct-v0.2", # Optional: if not specify, use memery model as the generator cache_dir="path_to_model_cache", # Optional: specify local model cache directory access_token="hugging_face_access_token", # Optional: Hugging Face access token beacon_ratio=4 ) context = open("examples/harry_potter.txt").read() query = "How many times is the Chamber of Secrets opened in the book?" # Memorize the context and save to cache pipe.memorize(context, save_dir="cache/harry_potter/", print_stats=True) # Generate response using the memorized context res = pipe(context=context, query=query, task_type="memorag", max_new_tokens=256) print(f"MemoRAG generated answer: \n{res}")
运行上述代码时,编码后的键值 (KV) 缓存、Faiss 索引和分块段落都存储在指定的 中save_dir。之后,如果再次使用相同的上下文,则可以快速从磁盘加载数据:
pipe.load("cache/harry_potter/", print_stats=True)
摘要任务
res = pipe(context=context, task_type="summarize", max_new_tokens=512) print(f"MemoRAG summary of the full book:\n {res}")
实验
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。