Radiology顶刊方向|医学影像数据合成:破解AI数据瓶颈与隐私挑战的新篇章
2024年Diffusion医学影像合成发表了不下百篇顶刊,据此,顶刊《Radiology》的一篇综述详细阐述了医学影像合成方向,即“Generating Synthetic Data for Medical Imaging”,该文章详细探讨了生成合成数据在医学影像领域的应用、挑战及未来研究方向,为后续AI医疗数据生成指明了方向。阅读PDF论文原文请添加文末二维码,发送【影像合成】。
01.引言
本文采取了一种科学严谨的方法,深入探索了医学影像领域面临的数据稀缺性和隐私保护的复合挑战,并提出了一条创新的解决路径——合成数据的生成。本篇文章全面介绍了包括变分自编码器(VAEs)、生成对抗网络(GANs)以及新兴的扩散模型(Diffusion Models)在内的多种前沿生成模型。这些模型通过精准模拟真实数据分布和结构特性,成功产生了高度逼真且多样化的医学合成影像。
文中详尽分析了这些生成模型在数据增强、数据匿名化、模态转换、对比度增强以及提高AI解释能力等多个方面的潜在应用,同时也明确指出了在提高生成影像的真实感、多样性、减少身份泄露风险、模型性能评估以及计算成本控制等领域所面临的技术挑战。除此之外,该文还批判性地指出了现行法规在保障合成数据安全使用方面的局限性,并呼吁制定更加严格的法律规范。
02.生成合成数据的模型与方法
- 生成模型类型:
-
变分自编码器(Variational Autoencoders, VAEs):
技术解释:变分自编码器是一种生成模型,通过编码器将输入图像映射到一个潜在空间(latent space),并通过解码器从潜在空间中重构图像。这种模型能够学习到输入数据的分布,并据此生成新的、类似的图像。
应用:在医学影像中,VAEs已被用于生成具有与真实数据相似分布和结构的合成图像,如MRI扫描和CT图像。
-
生成对抗网络(Generative Adversarial Networks, GANs):
技术解释:GANs由两个网络组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成尽可能真实的图像,而判别器则尝试区分这些图像是真实的还是由生成器合成的。两个网络通过相互竞争的方式进行训练,从而提高生成图像的质量。
应用:GANs在医学影像领域有着广泛的应用,包括生成MRI、CT、X光等多种类型的医学图像。它们能够生成具有高度真实感和多样性的图像,用于数据增强、模型训练和隐私保护。
-
扩散模型(Diffusion Models):
技术解释:扩散模型是一种较新的生成模型,通过逐步添加高斯噪声到数据中,然后学习逆转这个过程来生成图像。这些模型通过定义一个马尔可夫链的扩散过程来逐渐破坏数据,然后训练一个模型来逆转这个过程,从而生成数据样本。
应用:在医学影像中,扩散模型已经显示出在生成高质量合成图像方面的潜力,如胸部X光片、MRI和CT图像等。这些模型能够生成多样化的图像,有助于解决数据稀缺和隐私保护的问题。
扩散模型生成并由放射科医生标记的合成胸片
03.研究案例
1.扩散模型在脑部MRI中的应用
-
案例描述:Pinaya和Tudosiu等人使用扩散模型从高分辨率3D MRI数据中生成了逼真的合成脑部图像。
-
应用:这些图像通过文本输入进行条件控制,提供了一种强大的方法来模拟不同的脑部疾病或状态
脑部 MRI 修复的图像修复结果示意图
2.扩散模型在胸部X光、心脏MRI、盆腔CT和腹部CT图像中的应用
-
案例描述:Pan等人使用扩散模型生成了胸部X光、心脏MRI、盆腔CT和腹部CT图像。
-
应用:生成的图像用于训练分类器,并在读者研究中进行了评估。结果表明,这些生成的图像在质量和实用性方面达到了很高的水平,可以用于数据集扩充。
扩散模型生成胸部 X 光示意图
3.GAN在胸片和脑部CT图像去标识中的应用
-
案例描述:DuMont Schütte等人使用GAN生成了匿名的胸片和脑部CT图像。
-
应用:这些匿名图像允许在不牺牲患者隐私的情况下训练分类器,并且分类器的性能与在真实数据上训练的分类器相近。
4. GAN在病理图像插入和移除中的应用
-
案例描述:Wang和Zhang等人使用GAN在肺部CT图像上生成了合成性的磨玻璃结节。
-
应用:这些合成的病理图像能够增加分类模型的性能,帮助识别潜在的肺部疾病。
5.扩散模型在脑MRI扫描中的多任务图像修复**
-
案例描述:Rouzrokh等人使用扩散模型进行脑MRI扫描中的多任务图像修复,包括病变或正常组织的修复。
-
应用:这种技术有潜力改善脑MRI扫描的质量,提高疾病诊断的准确性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。