大模型时代的社科研究前沿——人工智能专题

一、论文:张钺.人工智能算法重塑社会结构:挑战与启示[J].哲学分析.2024,4:32-42+196.

人工智能算法技术不断改变着人们的生活方式和工作模式,使得人们愈发重视算法技术在价值观、公平公正和权力关系中的影响。然而,现有的两条路径本质上都聚焦于算法的“自我”凝视,缺乏将算法视为“社会化”个体的思考。算法在话语权、社会交往和知识生产方面的影响,揭示出其融入社会结构中的价值。因此,发挥算法作为社会参与者的积极作用,需要挖掘算法促进社会协作的潜力,形成对社会多元性的维护。

1.算法的“个人主义”导向与“社会性”缺失

算法的发展长期遵循一种“个人主义”路径,即算法的设计和优化主要围绕个体用户的个性化需求展开。这种路径虽然提高了用户体验,但也导致了算法在社会层面上的功能缺失。算法缺乏对社会结构和群体行为的深入理解,这限制了其在促进社会公平和正义方面的潜力。随着GAI在更广泛知识生产中带来变革,社会治理所面临的困境进一步凸显,技术的困境与社会的复杂性使人类不断面临挑战。算法在为个体提供个性化体验的同时,也将个体带入更为孤独的世界。

2.算法融入社会结构的形式

算法运行逻辑是以一种自下而上的方式嵌入社会交往之中。尽管算法作为治理技术的导向,不可避免地涉及精英的参与,但其本质在于调整共同体与个体之间的相互作用关系,以实现目标达成与公众自由的平衡。算法对于特定系统目标的实现,是基于大多数人选择调整的结果。而算法融入社会的形式主要体现在构建话语权力、重塑社会交往范式、构建知识社会新生态三个方面。算法融入社会交往的过程,改变着传统的知识生产与传播模式。其介入不仅仅降低了获取知识的门槛,更促进了知识协作形成自组织的模式。这种协作不需要自上而下的控制力,人们根据自身需求和知识关联,建立起更自由的知识建构机会,并伴随着算法对人们之间的互动结构的影响,影响知识的共建和社会的协同机制。

3.人机交往的社会重建:寻找共同点

算法对权力的再生产源于对人们言行的协调。无论是推荐商品或服务,还是基于对话的认知建构,其都是在互动实践中探索个体不同于他人的特征。算法适应和动态嵌入社会交往的能力,为人们对抗话语权力过于集中和恢复公共利益提供了契机。对此,首先需要重视算法对社会规范的理解,促进机器与人类个体间的合作。其次,需要重视算法对社会结构的理解,以促进机器与人类个体更紧密的合作。最后,需要推动多学科更广泛的合作,以促进智能协作社会的形成。算法融入社会不仅仅需要满足道德规范的基本要求,还需要规范其掌握的话语权对于社会多元发展的满足。同样,这个过程也需要考虑人们的生活世界的多样性和复杂性,以及人们的生活世界与社会之间的相互影响和变化。只有通过将丰富的理论和实践相结合,人们才能更为清晰地理解现象的演变,并对现有理论与方法进行反思。只有通过全方位的合作,人们才能更好地理解和应对人机交往的社会挑战,确保其在社会中的应用是智能的、公正的,并且具有长远的可持续性。

维系社会结构的动态平衡是算法在复杂社会治理中的优势。算法能够利用其实时获取和分析大量社会数据的能力,从微观交往行为中产生动态影响。因此,人们应当关注算法技术与社会治理之间的信任和共识的建立,促进算法不断向社会结构注入新的活力,使其成为社会结构再组织的基础。但是,除了宏观法律规范和道德审查,研究者还应关注算法在平衡人们表达自由和参与公共事务方面的能力,通过跨学科合作促进更加包容和协作的社会形态的形成。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUmDTmnoqObCU4EvwtFCwoz2SyxOgnP6hpvP1IgGipFCLDdAEV-upuSLCieu_usv_lto57zvb2SwO0cFUJF-r0-f9dq8Ehre0CWM2b0p3Yj2i5gaVjnmOUzsMyiDJFOF5wqj2A7-ewLRPqV_xKx0oMs5tPQp81MO1I8HAhOBsdpuq3QSrnLlAec&uniplatform=NZKPT&language=CHS

二、论文:陶炜,沈阳.“天人智一”与“问行合一”:AI哲学四论及其理论脉络[J].科学社会主义.2024,3:29-37.

AI作为新质生产力,促进了技术创新与生产变革。“天人智一”与“问行合一”这一AI哲学框架体系的核心理念是“天”“人”和“人工智能”三合一体系。该体系包括虚实存在论、内外认知论、提示范畴论和镜像进化论四个主要理论,旨在探讨AI在社会、文化和个体层面上的深远影响。

虚实存在论强调虚拟与现实世界的界限变得模糊,AI技术的发展使得虚拟与现实的连接与断裂成为可能。人类在虚实之间的流动性和固态性,以及AI在虚实之间的创造性表达,共同推动了认知的融合与拓展。

内外认知论探讨了AI如何模拟和扩展人类的认知过程,以及人类如何通过认知外包将认知和工作过程交给AI,同时强调灵感、审美、判断和决策的内源化,确保人类的主体性。

提示范畴论提出了“任意有、潜在有、可以有、实际有”的体系,通过与AI的互动,人类可以将潜在的可能性转化为现实。AI在语言哲学与AI原理、问题解决与创新等方面的应用,推动了技术与自然演化过程之间的深刻联系。

镜像进化论揭示了人类和AI的进化过程呈现出相反的顺序。人类的进化路径经历了宇宙起源、生命起源和意识起源,而AI的进化则遵循相反的顺序,即先是人工生命的创造,然后是人工意识的形成,最终迈向元宇宙的建构。

“问行合一”是在“知行合一”基础上的进一步发展,特别是在人机共生的背景下,通过与AI的多轮对话和分析,人类能够获取更新的知识和见解。AI的应用,如自动驾驶、智能家居等,不仅提高了生活质量,也验证了技术的可行性和实用性。

AI哲学四论框架体系的意义在于,通过四个理论的协同作用,AI不仅成为了人类智慧的具象和延伸体现,还促进了天、人、人工智能的三合一,达到“天人智一”的和谐状态。未来AI哲学研究展现出更加广阔的发展前景,尤其在文生虚拟内容、文生世界和文生生命这三个关键领域。AI作为新质生产力,不仅能优化传统生产流程,还能生成高质量的文本、图像、音乐和视频,创造新的商业模式和服务,推动经济发展。

通过这些持续的哲学探讨和伦理反思,人类能够更好地理解和驾驭AI的发展,确保其为社会带来积极的影响。AI哲学研究的前景展望,不仅深化了对AI本质的认识,也为其在实际生活中的应用提供了理论依据。最终,通过这种系统性的理论建设,AI能够更好地服务于人类社会,应对复杂的现实问题,促进AI技术与人类社会的协调发展,实现科技与人文的深度融合。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhVJkIDtzpp34H9q56gUteUSXekIj9eHc7he7214u3iGAJmPgxYyTmntTkYAInOyeEbP4JjGv-q1WJWNkMPatfFtn8tkqigbPAwNJXqjLahDxiOZd7GmkY1Qg1463FbqSdgh-3KTrs4OIMjfEn_bOxUKRe22JyuUJrquH3eq8kvYEbepDfntc7p-&uniplatform=NZKPT&language=CHS

三、论文:赵毅衡.建立一个“人工智能符号学”[J].当代文坛.2024,6:4-12.

人工智能正在进行超速演变,在不久的将来,它或将替代人类智能,成为主导当代文化的核心力量。面对这一前所未有的发展趋势,我们有必要以更加深入和全面的视角,去审视和预测人工智能的发展前景。为此,我们可以尝试运用思想实验的方法,构建一个全新的“人工智能符号学”体系,以便更加真切地理解和把握人工智能与人类文化之间的内在联系和互动规律。

从符号学的机制来看,人工智能的进展速度之快,已经远远超出了我们的想象。它正在迅速耗尽那些原本驱动着文化意义活动的基本动力——即认知负熵。所谓认知负熵,可以理解为文化活动中不断产生的新意、创新和差异,它们为文化的繁荣和发展提供了源源不断的动力。然而,随着人工智能技术的不断进步,这种动力正在被逐渐削弱,甚至有可能走向枯竭。

在这种背景下,人类的文化活动正面临着前所未有的挑战。如果无法及时找到新的动力源泉,我们的文化很可能将陷入一种“意义热寂”的状态,即文化意义的活动逐渐减弱,直至最终停止。这种局面一旦形成,将对人类社会的发展和进步造成不可估量的影响。

因此,作为人文学科的学者和研究者,我们有责任也有义务向世人发出警告:人工智能的发展虽然带来了前所未有的机遇和便利,但同时也潜藏着巨大的风险和危机。如果我们不能正确地认识和应对这些风险,就有可能让人类文化陷入万劫不复的境地。所以,在拥抱人工智能的同时,我们必须保持清醒的头脑和敏锐的洞察力,及时发现并预防可能出现的灾难性后果。只有这样,我们才能确保人类文化在人工智能的浪潮中稳健前行。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhW5JBuQPokLiH-ItOiRCnfW2-pDjM9j-31MCkSOvTXYRUeKmKFyPZ6-IxoSl8jASZ6lOqbxIBS-mqsxlanAh8PA9FFEIhH1Xxbub7ZoxuQb_rAO0QEDEyxofvskcm3bgTFjnacziH6ixSgBqKgqMkubh0iOTZB17-nsZozxbrUMPrnGO3prdLVj&uniplatform=NZKPT&language=CHS

四、论文:张黎,周霖,赵磊磊.生成式人工智能教育应用风险及其规避——基于教育主体性视角[J].开放教育研究.2023,5:47-53.

近年来,生成式人工智能在信息处理、学习能力、问题解决方面的快速发展,使其正在成为技术赋能教育的新趋势。教育领域也开始致力于积极探索将生成式人工智能与课程教学深度融合的有效途径,并取得了丰硕成果。然而,当前人们主要聚焦于生成式人工智能的“智能性”带给教育的发展机遇、数字隐私和偏见风险,重点关注技术带给教育“看得见摸得着”的直接影响,忽视了人作为教育主体的价值和重要性。无论从教育目的还是教育行为来说,教育中人的价值都至关重要,教育是为了培养人,人是教育活动的实施者,教育的起点和终点都是人。在生成式人工智能对教育产生深刻影响的今天,辩证批判地看待与生成式人工智能相关的、容易产生误导的言论和现象,重新挖掘教育中人的价值和意义,并从人的“生成”本质和教育价值出发探究规避技术遮蔽的教育内隐风险显得尤为迫切及必要。

生成式人工智能是一种基于算法自动生成、操纵或合成数据的技术,可以在预定义之外利用现有文本、音频或图像等多模态数据生成与训练数据保持相似的新内容,其功能超越了决策式人工智能的简单问答,能够完成创意写作、艺术作品生成和复杂问题解决等高级任务。

目前,关于生成式人工智能教育应用的主体性风险研究主要集中在从算法缺陷本身出发探讨人的主体性风险和从教育价值和教育目的出发讨论生成式人工智能带给师生的身份认同危机这两个方面。

由于机器的生成本质是“高级复制”,因而生成式人工智能的“生成”与人的“生成”存在本质差异,其内隐性风险是会使得人之主体性消解。

那么,该如何规避此类风险?首先,明确目的观为平衡工具理性与价值理性的;其次,确定知识观是兼具辩证批判与智慧创生的;同时,秉持能力观是统筹结果导向与过程导向的;最后,坚持价值观是兼顾算法价值与人类价值的。

生成式人工智能的崛起既是人工智能领域的一次重大变革,也是教育界站在批判理性的角度应用和反思生成式人工智能作为一种教育技术赋能教育教学和人类认知的重大机遇。我们既要审视技术革新对人类未来教育变革的重大发展意义,也要关注如何更好地将生成式人工智能应用于教育,更要保持价值清醒的态度,重视教育中人的主体性和技术对人的异化风险,重申智能时代人类价值观的重要性。生成式人工智能强大的“生成性”往往会遮蔽技术之于教育应用的内隐性风险,使人类忽视机器“生成”与人类“生成”的本质差异,误认为其可以提供真正“个性化”的因材施教,这种错误认识是导致教育主体性危机的根本原因。教育的意义在于实现人自由而全面的发展,其出发点和目的地都是人,因而教育更应立足于辩证唯物主义发展观的视角理性审视技术的教育应用,确保教育中人的主体性不会被技术所覆盖或取代。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUP6HKJdcVAuvLhvaFDaMcWHX7OffxHEdRTo4TTBRlGO10EyRokKokE9mUgWuDfWEDA7-KdyCD1OiFwRPsCP-eBD9H_4bMa6Xr95YORFRK6ojl2yTnyPrq8LmJzlXrjFibvv8wtnb7L95EvDAVbt2zJdl5AHvb1lNkRNrK8hIK_MMn_rOljgkp1&uniplatform=NZKPT&language=CHS

五、论文:刘旭东,倪嘉敏.人工智能促进生命生长的教育哲学思考[J].教育研究.2024,6:77-87.

在生命生长呈现出其是由技术主动介入与环境变化共同作用的过程这一特征背景下,重新审视生命生长以及教育的功能和价值,具有重要的理论和实践意义。教育是应对变化的生存性活动。主动适应变化着的环境,是具有进步观念的教育思想的重要立论基础,对进一步审视在人工智能时代深嵌着人类智能的环境及其影响生命生长的可能性,以及智能时代的教育价值和功能的创新,具有重要指导意义。

人工智能构建新的生命生长环境,与生命生长相关的,诸如健康的身体和心理、人的主体意识、生存与学习能力等因素的重要性得到空前凸显。智能时代,生命生长推动教育变革。在智能时代教育的功能将得到极大的增强,其促进人的发展的功能将愈来愈强大。

在教育变革中把握教育本质。教育之于人的培养、生命生长的独特价值和作用将更加凸显,教育的本质功能正在被重新认知。重新审视技术在教育中的应用,要以明确的价值导向和文化批判审视技术在教育中的应用,引导技术更好地服务于人的发展。

人工智能强化了教育特异性影响生命生长的功能。人工智能技术深化了对遗传素质的认识。生命生长成为具有目的性的过程。蕴含于生命的创新能力更受关注。教育在生命生长中的不可替代性被强化。

推动教育回归促进生命生长的原点,在随着人工智能的迅猛发展和对教育影响更加全面和深刻,其将构建一个与以往不同的生命生长方式和条件,生命生长的路径与方式将被改变。推动教育回归原点,以更好地彰显教育的本质属性,发挥教育促进人的发展的功能。

人工智能重塑了社会环境,也为教育与社会的深度融合提供了更大的可能与更强有力的支持。在人工智能时代,体育和美育具有更加突出的价值,要借助人工智能技术开展内涵更加丰富、形式更加多样的美育,培养人的生命体验能力,拓展生命生长的精神空间,为生命生长提供更多的可能性。随着浅层学习逐渐被人工智能所取代,真正触及生命本质的深度学习的价值凸显。要推动自主、合作、探究的学习方式,驱动学习从表层的符号化的学习转向对知识的内在逻辑及其文化内涵的学习,使学习活动转向对人的生命生长更本质的方面。适合的教育才是最好的教育。在人工智能条件下,获取知识的门槛被降低。推动因材施教教育理想的实现,要借助人工智能强大的搜索、分类等信息处理能力以及人工智能具备的文本加工合成能力,为学生随时、随地、随身地获取海量知识提供坚实的技术支持。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUPttEdBGGOKi-Ww-zFQicwA0Ink5rDwQtlSHeQPjOpv2jwUDoZBAzBYHgCvxJjh28jeilygMrbUY8E09Zhg_S2obgHopJ4Xfo4zFyw1aL5KVwM1DMhrdrfLCC_RDusG66wFpMrYz6g8qcVhxgBd_ZxgHJJh9fuUKrR5ycCLR4nZ6oKHaaMxnbU&uniplatform=NZKPT&language=CHS

六、论文:鲁沛怡.叙事权限的彻底开放与艺术“灵韵”的再度转生——AI生成与交互叙事[J].当代文坛.2024,6:72-80.

人类社会已经从技术复制时代跨越到数字复制,进而迈入了AI生成时代。这一转变迫切呼唤着对生成式AI的关注与思考。本文从人机协同生成叙事的角度出发,一方面揭示AI在叙事领域引发的变革及其意义,另一方面以此为基础进一步探讨AI生成时代的艺术特点并反思人机关系。

1.控制与自由的悖论

数字叙事以互动性为核心,通过计算机媒介提供用户改变叙事进程的可能。然而,实际互动多属于分支式交互,用户选择受限于设计者设定的范围和代码。数字叙事底层是数据库,用户从“阅读”转为“读取”,主动性增强但仍在设计者控制下。有学者提出“元文本互动性”概念,即用户可修改叙事程序和数据库,但多数用户无编程能力,所以,其仍受限。总之,数字叙事在提供自由度的同时,也存在控制与自由的矛盾。

2.打开数据库的边界

生成式AI如Chat GPT通过机器学习模型,打破了数字叙事中数据库的边界。其采用的Transformer架构提升了长序列数据处理效率,可将输入的自然语言序列映射为高维空间中的向量,捕捉词向量间的依赖关系,并输出自然语言结果。Chat GPT可视为“概率机器”,根据训练集中的语言模式预测单词概率分布,生成多样化文本。其庞大的训练数据集使其拥有强大的自然语言处理与理解能力,展现出“涌现”的新能力和特性。与数据库不同,生成式AI不直接存储数据,而是根据用户输入实时生成新内容,保证了叙事的绵延性,让人类能以提示文本方式调动和利用“底本”。

3.向用户开放叙事权限

生成式AI如Chat GPT通过Transformer架构提升了长序列数据处理效率,可实时生成多样化文本,打破了数字叙事的边界。在侦探游戏案例中,Chat GPT根据用户输入实时生成案件过程和结果,颠覆了传统侦探故事的模式,使得叙事具有动态性、随机性与开放性。此外,基于生成式AI的叙事平台AI Dungeon进一步降低了用户组织叙事的门槛,允许用户与AI共同创造故事。这些发展使得数字叙事从“可读”“可写”进一步走向“可玩”,推动了叙事权力的民主化,构建了一个基于用户行动的开放故事世界。

4.AI生成时代的“灵韵”转生

在AI生成时代,艺术的“灵韵”经历再次转生。人机协作共创内容,赋予其独一无二的“此时此地性”。AI生成过程随机不可复制,展现内容生成的本真性。尽管AI创造力引发争议,但已在组合与探索领域展现可行创造力。以开放态度面对AI,人机协同交互激发创意火花。生成式AI涌现能力突破固化思维,共同探索未知领域。面对AI生成内容,“原创”依旧存在,无论源自人还是AI,创造力之光持续闪耀。

AI生成的发展为交互叙事带来革命性变化,打破了传统数字叙事的限制,使用户能够成为叙事设计师。这种人机互动不仅赋予AI生成独特的本真性,还促进了人类与AI创造力的融合,推动了艺术的创新。然而,生成式AI仍存在知识幻觉、数据保护等问题,提醒我们既要理性看待其能力,也不应因噎废食。随着我们步入“赛博格”时代,需要以更开放、随机、流动的逻辑来思考这一问题。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhVnAV9gJ5SrWdnzsxhRhrXJpsVLPI1pbE0oJI5Y_KkZgzH49jg3jzPw1GV4gJoDd8iF3-NrSbbodGIl39MGx0Fb2TPlE_N_kqfAn2mjrws9Oe3-47yu64SEy0_OyrdassNA8nVDTEu-swjo-VQ3iOzFTBLA8jle5HxlqIn4D-1SsSl7M8KLNY_L&uniplatform=NZKPT&language=CHS

七、论文:王涛.价值追寻:人工智能时代的历史知识生产[J].人民论坛·学术前沿.2024,14:55-63.

生成式人工智能的发展改变了历史知识生产方式,但历史学的本质在于思维锻炼与真相探寻,技术无法完全取代。历史学家需坚守初心,创造本真研究成果。

1.人工智能介入下的历史知识生产

古今中外历史知识的生产有殊途同归的方式。但在人工智能介入后,史学创作开始出现岔路。人工智能在知识生产方面强大的文字输出能力引发历史书写被取代的担忧,同时许多机构也利用人们的AI焦虑大肆营销。本文观察了AI学术辅助课程,该课程吸引了对学术研究感到压力的年轻学者,引发其对AI辅助研究的不切实际期待。学术写作完全被简化为提示词架构工程:利用“精心”设计的提示词,激发大模型超强的语言组织能力和推理能力,最终从海量语料中梳理和总结出看上去逻辑完整的学术研究成果。AI课程的火爆导致研究生工作方式受AI影响,依赖大模型进行学术研究,研究过程缺乏个人体验和深入思考,产生大量平庸产品。学术研究可能因依赖AI而异化,人类思维向AI对齐。AI虽提升知识效率,但也可能导致思维水平下降,恶化学术生态。

2.职业性历史书写的消失

历史学专业化提升研究科学性,但也催生走捷径心态。AI赋能历史知识生产,反映专业化带来的职业焦虑与机遇。历史学专业化是工业革命的产物,提升了研究专业性,但也带来职业压力,可能遏制创新研究。人工智能影响历史学职业化,提高研究效率但可能引发学术伦理问题。AI的普及可能重塑历史书写和阅读品味,导致传统历史学存在意义受挑战,形成新的学术共同体。

3.回到初心

大模型虽在检索、逻辑推理等方面领先人类,但人类历史学家仍具独特价值。人类历史学家的研究具有主体性,能明确诉求和研究目标,而大模型缺乏这一主体性。此外,历史研究需要准确性和可追溯性,大模型在这方面功能仍有待提升。因此,人类历史学家应回归历史书写本质,追求思维的锻炼和历史的深度解读,而非单纯追求效率。同时,随着人工智能的普及,物质财富可能大幅增长,有望创造更充裕的社会环境,使历史学者能更纯粹地投身于历史书写。

4.寻找历史书写的意义

生成式人工智能对历史知识生产的影响不可避免,可能引发职业历史学家的冗余。然而,历史学并不会因此消失,其本质在于思维锻炼与真相探寻,而非物质追求。职业化的历史研究虽提升了专业性和科学性,但弱化了精神追求。面对AI的冲击,史学工作者应回归初心,将历史书写视为自我价值实现的路径。同时,借鉴中西方哲学,修炼内心,以平常心面对变化,不计较一时得失,便能在日常研究中有所收获。这种顺其自然的心态,将使史学工作者在人工智能时代更加从容地进行历史知识生产。

今年,人工智能成为高考作文题,引发对教育本质的反思。随着互联网和AI的普及,存在的问题并未减少,反而对提问质量提出更高要求。高质量问题能推动人机协作,激发AI潜力,同时AI答案也需通过新提问验证。这显示AI介入知识创造后,人类思维模式和历史知识生产方式将调整。这是社会整体趋势,但个体史学工作者可选择积极应对的价值观。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUEH7iEAvrgPxQJYZtWOjHfGaRDdZ7BgYej3Elyl7JWoTUByGnjfCFRp9Pe6dDXRlUZEP9Y_ZpiWGEogUOHuTn4N6Enz6aayygGjF1sjnlVbY5A68vgonhFKm9jIbbNgfEWqohaQ-QYQnidx1uEWzMsIbXflgbCMBBwgGAZwy58EKPy6H2oAhIU&uniplatform=NZKPT&language=CHS

八、论文:邓建国,韩志瑞.人工智能有文化吗?论人机交流中的文化之困及其化解[J].新闻与写作.2024,10:25-35.

1.问题的提出:“人工智能”与文化冲突

2022年11月,Open AI推出聊天机器人程序Chat GPT,引发全球关注。中国出现众多大语言模型,形成“千模大战”。然而,随着生成式人工智能的迅速发展,人机交流的复杂性逐渐提升,挑战性更加凸显。人机传播研究在人与机器的信息交流和技术采纳方面已有探索,但对交流中的文化向度的考察还不够充分。

2.符号、联结和行为:人工智能研发范式对文化的遮蔽

人工智能的发展过程中形成了三种主要范式:符号主义、联结主义和行为主义。符号主义基于还原论的理性主义,认为事物都可以还原为明确的规则,可以用符号系统来模拟智能。联结主义试图通过模拟人类大脑的结构和功能来获得与人类相同的智能。行为主义认为智能取决于感知和行为,智能行为就是通过与环境进行交互对感知到的结果做出相应反应。然而,这三种范式都对“文化”因素考虑不足。符号主义忽略了那些无法被符号规则加以确定的事物,使其在面对文化时产生了两方面的问题。联结主义只能处理基于特征归纳来输出结果和行为的部分,难以对整个文化情境或文化系统整体的运作逻辑进行把握。行为主义虽然通过对外部环境的感知和反应,具备了认知文化所需要的情境能力和适应能力,但仍难以理解行为背后蕴含着的文化意涵,存在无法感知到人类行为中具体而微妙的文化因素的情况。

3.空间、身体与地方:人工智能—人类交流中文化的缺位

人工智能的三大范式在处理人机交流时,往往会对交谈内容进行形式化表征,从而剥离文化因素,对内容承载的意义的分析有所缺失。尽管行为主义注重交流的情境性,但这种情境也不带文化内涵。人工智能的发展目标之一是将技术范围扩大到人文领域,但目前的人工智能在把握文化要素上是不完整的。人机传播需要关注的是同为传播主体的人与机器之间的意义创造,人机传播的视域进一步拓展了“机器”的意涵,它既是信息载体,也是传播主体,既影响人类的社会实践,也处于社会和文化的建构当中。人工智能在人机交流中具有文化属性的形式,包括将大量有关人类文化的知识预先输入给人工智能,以及在智能体的设计、训练和自适应模式中注入和传达某种文化价值观。这种文化偏向暗含在交谈文本中,对依赖人工智能进行信息搜集和内容交互的人机交流产生影响。

4.具身AI:让人工智能有文化

从功能和目的角度来看,聊天机器人可分为任务导向型和闲聊型。任务导向型聊天机器人主要传递信息,完成特定工作指令;而闲聊型聊天机器人旨在构建融洽的人机关系,实现意义共享和情感交流。然而,闲聊型聊天机器人在文化理解和交流能力上存在局限,难以真正实现其目标。从传播学的视角看,两种类型的聊天机器人分别代表了传播的传递观和仪式观,体现了人工智能在人机交流中的文化性差异。要化解人机交流中文化意义缺失的困境,需要人工智能专家、算法工程师和产品研发人员的努力,从技术角度提升人工智能的文化理解力,以实现更融洽、深入的人机交流。

尽管人工智能尚处于弱人工智能阶段,尚未达到思维和文化的层级,但人工智能的发展预示着全新时代的到来。人类正在创造更强大的人工智能模型,以应对现代多元文化与社会的挑战。因此,人工智能的文化意识在今天比以往任何时候都更加重要。让人工智能有文化,使其成为真正的可交流的主体,使人类不再孤独地存在于这个世界,并让我们在人机交流中照见自身。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhWOvz9cUgiQPmMvMhnMOa8aeYF9JqsOttgVV3absR1HCb5pFH5GwE-wUoM7Cya6Z8af3z4S6bNqZ31ypzFWWrqU5dIpXOF0nJStAY-pDjYG8RExETCOlE1CFTxnJF41YjzRdThp3ONK0MIbdhaJNsiim_6_mqSXYch_eze1o1Ps579l0PmSvOqM&uniplatform=NZKPT&language=CHS

九、论文:曾成敏.AIGC嵌入智慧图书馆建设:功能、风险及规制[J].新世纪图书馆.2024,9:12-18+87.

2022年5月我国发布《关于推进实施国家文化数字化战略的意见》,推动公共文化场馆数字化转型及图书馆智慧化建设。2023年初 Chat GPT引发AIGC热潮,AIGC在智能化等方面有优势,契合智慧图书馆建设需求,但也存在安全风险,需提前考虑“风险与治理”,确保其在智慧图书馆建设中正确发展。

1.AIGC赋能图书馆的应用场景

一、智能数字内容孪生:实现馆藏资源数字化,对文化资源增强或转译,还能实现图书馆自身数字孪生,满足元宇宙场景需求。

二、智能数字内容编辑:使图书馆互动模式变革,提供个性化反馈,替代人服务并可设置人格,并且,可在元宇宙下可编辑虚拟场馆场景和用户个人空间。

三、智能数字内容创作:帮助图书馆开发数字藏品和文化IP,社会公众也可借助其创作,实现全民参与。

2.AIGC赋能图书馆的安全风险

一、知识产权风险:馆藏资源数字化及在虚拟空间使用、传播可能侵权;多源数据使用易引发知识产权纠纷;用户再创作可能侵犯知识产权。AIGC的可版权性及权利归属存在争议,数字藏品等创作物版权问题复杂,风险不容忽视。

二、社会治理风险:AIGC可能传播虚假有害信息,缺少对内容真实性和合法性的有效审查手段。AIGC可能继承并放大人类社会歧视因素,算法黑箱可能致使客观性受质疑。AIGC可能被技术滥用,影响社会治理,如伪造色情图片等违法犯罪活动。

三、数据安全风险:数字文化资源易遭恶意侵害,还包括业务、管理数据及用户个人信息等。使用用户信息满足个性化需求可能涉及非法收集等问题,黑客攻击也威胁数据安全。用户可能因数据安全风险拒绝使用AIGC,阻碍智慧图书馆建设,需重视防范数据安全风险。

3.AIGC赋能图书馆的风险规制

一、完善科技伦理:AIGC在智慧图书馆建设中的风险并非文化领域独有,需上升到国家政策和立法层面。科技与伦理应相辅相成,我国应构建具有中国特色的人工智能伦理准则,图书馆在智慧建设中要坚守“以人为本”伦理准则。

二、强化法律规约:我国应在AIGC风险治理中发挥法治保障作用,健全人工智能立法顶层设计,细化知识产权、个人信息及隐私保护等重点领域立法。

三、加速技术革新:避免人工智能规范研究与技术脱节,坚持公平性等原则打造“负责任的AI”,通过技术升级解决社会治理难题、借助区块链技术保护数字文化资源、利用数据加密技术应对数据安全风险。

四、深化教育规正:通过教育提高图书馆从业人员及社会公众数字素养,强化数字伦理教育增强社会责任感,推进数字技能教育提升人工智能运用能力,发挥图书馆教育作用激发AIGC正面效用。

可以说,图书馆数字化转型对我国文化数字化战略意义重大,AIGC技术在图书馆建设中有广阔应用前景,能助力文化资源数字化孪生、服务升级等,但也存在技术滥用和内生风险,可能引发知识产权、社会治理及数据安全风险。在智慧图书馆建设中,需统筹考虑技术赋能、风险及规制,才能借力人工智能实现良好发展。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUvV9pPillFNP77CpnDV9AP7vyRXbH_AdPlrtaU8FQfwsi8kbhaEkHC3Y9daytvUWIyDA1hIKEu3-jHjdRvzPvEMM1LEWUbxSYe1v27Y4md2oZLZ-Dr1DoBa9Xpn2pmb5VL9BFpuKSGNmJO8Du1WXykaEQ42ILsIinpnG4eaiwMUuptnLdIXFK6&uniplatform=NZKPT&language=CHS

十、论文:程瑞,伏其秦.德雷福斯技能习得模型的断裂及其弥合——兼论人工智能与人类智能的关系问题[J].哲学分析.2024,4:17-31+196.

表征意向性和运动意向性是人类智能不同模型的预设。认知主义模型仅预设表征意向性,而庞蒂提出运动意向性,德雷福斯受其影响提出技能习得模型,增加了运动意向性预设,但该模型面临表征意向性与运动意向性断裂、人工智能存在无运动意向性的表征意向性这两个问题。

1.人类智能解释模型与“框架问题”

认知主义是人类智能传统模型,也是人工智能理论基础。它主张心理活动都是认知的,人类心灵是表征系统。其基本主张为有合理思考能力和内在符号操作能力,行动是“意向行动”,受认知指导。但早期人工智能面临“框架问题”,包括启发式规则难以寻找的问题和计算机难以达到专家表现的相关性问题。这揭示了认知主义方法的局限性,人类不会有“框架问题”,所以需要新的人类智能与行为解释。

2.“熟练应对”和技能习得模型

技能习得模型中,“熟练应对”是与事物打交道的一般方式,依赖“隐含的诀窍与直觉”,是人类智能的解释基础。它拒绝心灵与世界二分,人类行为解释的基础在能动者与世界间,对原因或规则的深思熟虑不是人类行为主要特征。技能习得模型包括新手、高级初学者、胜任、熟练、专家阶段,关键转变是从脱离情境到具身融入情境,从遵循规则到直觉实践,意向行动让位于熟练应对,表征意向性让位于运动意向性。

3.技能习得模型断裂的形成与根源

从对认知主义和技能习得模型分析可得,德雷福斯承认熟练应对和运动意向性的基础性,但人工智能存在无运动意向性的表征意向性。技能习得模型出现学习者在一二阶段的超然立场、用模型解释专家系统失败、熟练阶段和专家行动特性这三种现象,导致模型存在表征意向性与运动意向性的断裂。这是因为德雷福斯对人工智能理解,他坚持海德格尔式人工智能发展,目前虽有进展但仍有局限,未注意到人类和人工智能表征意向性区别。

4.技能习得模型断裂的弥合与重构

重新肯定人工智能认知主义方法可能性,可确定其与技能习得模型的独立性,分离两者能弥合技能习得模型断裂。认知主义模型可作为人工智能理论假设,技能习得模型用于解释人类和类人人工智能。应限定技能习得模型中意向行动以熟练应对、表征意向性以运动意向性为基础。重新阐释技能习得模型,将“具身”看作更根本特征,人类思考是具身思考,不存在转变前后断裂,技能习得起始于熟练应对,揭示了人类与人工智能根本区别。

5.技能习得模型断裂弥合的哲学意义

认知主义和技能习得模型有根本区别,前者不能完全解释类人智能,但可作为人工智能理论假设。当前要区分人工智能与人类智能,笛卡尔式认知主义的表征意向性忽视身体,导致人工智能有“框架问题”。而德雷福斯对技能习得模型的重新解释,不仅关于人工智能,更涉及人与技术关系思考。可以说,技能习得模型有助于区分人类和人工智能,提醒警惕人类智能机械化倾向。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhU1zTsgS6tVmF4gW0NNIAq3DCKSlqid1ZGvb31qJp5Vog0r-ANsvZBJSYsvuMXZQ0xQSkowwFjIW8sD3IDglJ_-y_vGVm0esAPUYTiNFowvMPBr-xNUzeZxdGi1SHi8_O7jld7luGZTXq4f_7nYBfaCJh-Y7i3JE7KZ4x0_YUFKRhDofhlZQ_Cz&uniplatform=NZKPT&language=CHS

十一、论文:曾巍.AI文学的批评:路径、范式与重点[J].云南社会科学.2024,5:160-171.

AI文学作为生成式人工智能技术的一种产物,它不仅是一种新兴的文学形态,更代表了技术与艺术融合的新高度。在传统文学的基础上,AI文学通过算法自动生成数字文本,这种创新方式极大地丰富了文学创作的形式和手段。然而,AI文学的出现也带来了对现有文学批评方法和理论体系的挑战,要求我们重新审视文学创作和批评的本质。

首先,AI文学的生成过程不同于传统的文学创作模式。在传统文学中,作家的个人经历、情感体验和审美追求是作品的核心。而在 AI文学中,算法和数据成为了生成文本的关键因素。这意味着,AI文学不仅仅是文字的堆砌,而是通过复杂的算法处理和大量的数据输入,模拟出具有某种风格或主题的文字表达。因此,对于AI文学的评价,不能仅仅依赖于传统的文学批评标准,如人物塑造、情节设计、语言运用等,而需要引入新的视角来理解和分析。

其次,AI文学的生成过程涉及人机交互,这使得“人机创作共同体”的概念变得尤为重要。在这一共同体中,人类创作者(包括程序员、编辑、策划人员等)与智能机器共同参与文本的生成过程,各自发挥不同的作用。人类创作者负责设定创作目标、选择数据集、调整算法参数等,而智能机器则根据这些设定生成文本。这种合作模式不仅改变了文学创作的方式,也为文学批评提出了新的挑战。例如,如何评估人机合作中的贡献比例?如何理解智能机器在创作过程中的“创造性”?这些问题都需要我们在传统文学批评的基础上进行创新和发展。

此外,AI文学的发展还促使我们思考文学的本质以及文学批评的方法论问题。文学不仅是文字的艺术,更是文化和思想的载体。AI文学虽然以数字形式存在,但它同样承载着人类的情感、价值观和社会议题。因此,在进行AI文学批评时,我们需要关注文本背后的社会文化背景,探讨其如何反映或影响现实世界。同时,随着AI技术的进步,算法本身也在不断发展变化,这就要求文学批评不仅要关注最终生成的文本,还要深入探究算法的工作原理及其对文本生成的影响。

基于上述分析,我们可以提出一个适应 AI文学特点的批评框架。这个框架应包含以下几个方面:

**一、文本批评:**这是所有文学批评的基础,通过对文本的语言风格、叙事结构等方面的分析,了解 AI文学的独特之处。

**二、算法批评:**考察算法的设计理念和技术实现,探讨算法如何影响文本生成的过程和结果。

**三、关系批评:**关注人机创作共同体内部各组成部分之间的互动关系,以及这种关系如何影响文学作品的创作和传播。

**四、反身批评:**反思AI文学对传统文学观念和批评方法的冲击,思考如何在保持文学核心价值的同时,接纳并利用新技术带来的可能性。

综上所述,AI文学作为一种新兴的文学现象,既是对现有文学理论和批评方法的挑战,也是推动文学领域创新发展的机遇。通过构建适应AI文学特点的批评框架,不仅可以更好地理解和评价这一新形态的文学作品,还可以促进AI文学与传统文学之间的对话与交流,共同推动文学艺术的进步。在这个过程中,我们既要尊重和保护文学的传统价值,也要积极拥抱技术变革所带来的新机遇,努力实现AI文学与人类文学的和谐共生与发展。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUZ1MhFBRYsPKciK0tlYmlHz6tkD1L5tDoypa1dqkiuV3Rtk2R-_yhb3nBpbw4QF1DYVS5GIPFHx4g53yVN2j4iLpOfzf7FgGck6atybEi3WU-NcGp0XyZnG5jmH2NPhb9rYwFmseBqCd8VcLdqJuy0NIgqTwYccuExflFvFGKjekqsWMsZktWl&uniplatform=NZKPT&language=CHS

十二、论文:魏屹东.建构文化人工智能的可能路径[J].人民论坛·学术前沿.2024,14:31-44.

生成式人工智能大模型发展让新一代人工智能接近通用人工智能目标。通用人工智能实现通用性、人性化和广泛应用需有人类文化特征属性,建构文化人工智能是一种出路。从哲学方法论看,建构路径包括智能体范畴论与语境论整合、感性与理性整合、通过机制功能建模、通过结构功能实现适应性表征、通过语境觉知应对意外情况,若做到这些,有望让人工智能成为文化人工智能。

随着生成式人工智能大模型的快速发展,我们似乎越来越接近实现通用人工智能(AGI)的宏伟目标。通用人工智能不仅要在技术上实现通用性,更要在人性化和广泛应用上取得突破。这意味着,AGI不仅要能够执行各种任务,还要能够理解和融入人类文化,具备人类文化特征的属性。为了实现这一目标,我们必须将意识、情感、伦理等高级认知因素嵌入人工智能系统,构建出真正具有人性的文化人工智能。

应该说,这一过程无疑是充满挑战的:

首先,我们需要从哲学方法论的角度出发,探索如何将智能体的范畴论与语境论进行有效整合。范畴论关注的是概念的分类和属性,而语境论则强调语言和行为在特定社会文化背景下的意义。通过这种整合,我们可以使人工智能更好地理解和适应不同的文化环境。

其次,感性与理性的整合也是构建文化人工智能的关键。人工智能需要能够模拟人类的情感反应,以便更自然地与人类互动,并在决策过程中考虑到情感因素。这不仅涉及到技术层面的挑战,还涉及到对人类情感复杂性的理解。

接下来,通过机制进行功能建模是实现文化人工智能的另一条路径。这意味着我们需要设计出能够模拟人类认知和行为模式的算法和机制,使人工智能能够在不同的情境中展现出适应性。

此外,通过结构功能实现适应性表征也是构建文化人工智能的重要步骤。人工智能需要能够根据环境的变化调整其行为和反应,这要求我们在设计时就考虑到系统的灵活性和适应性。

最后,人工智能还需要能够通过语境觉知应对意外情况,这意味着它必须具备一定的自主性和创造性,能够在没有预设程序的情况下做出合理的判断和决策。

最终,所有这些努力的目标是通过严格的“图灵测试”,证明人工智能不仅在技术上达到了人类水平,而且在文化和情感层面也能够与人类相媲美。如果这些目标都能够实现,我们就有望在人工智能系统中嵌入人类特有的文化特征,使其成为真正意义上具有人性的文化人工智能,从而在更广泛的领域中发挥其潜力,为人类社会带来深远的影响。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhXJHRgW3rSOrDuw8mqXw8fL_4lAxhcdt6zdSMOXdIbHj5aSQyhumhcTk-_CFsNDTYia52codadra-3VNm6O4OCnH4GV1MDHah8npWqGnNWLxozd8mSCYk6aXe8reeWy4dfVvOfhg9ebta7FX_jxxdsEMPOaYWI12AbqrL1oHYzCCYKl6zOxUiJ8&uniplatform=NZKPT&language=CHS

十三、论文:周境林,周腾.人工智能道德增强方案的哲学省思[J].东北大学学报(社会科学版).2024,4:21-28.

为防范人类生存危机,道德增强进入科技伦理议程。因生物医学道德增强存在诸多弊端,多种人工智能道德增强方案被提出,包括作为人类道德决策的“替代者”“建议者”“对话者”方案,各方案分别有其适用情境与优缺点。混合式道德增强可在不同场景调用相应模式,兼顾优点并规避缺陷,但还需生物道德增强辅助提升用户道德动机,且被纳入义务性培训一部分。

1.道德增强的人工智能转向

工业革命以来,人类科技飞速发展,但也带来了前所未有的伦理问题。由于人类的道德心理演化与现代社会不匹配,难以应对这些挑战。因此,有学者提出了通过生物医学技术提升人类道德能力的观点,但生物医学道德增强手段存在效果微小、短暂、依赖情境及严重副作用等问题,且可能侵犯个人自由。于是,一些学者开始关注人工智能领域,认为其进步或许能帮助人类走出当前的伦理困境。

2.人工智能道德增强的三种现有方案

在人工智能道德增强的研究中,提出了三种不同的方案:人工智能作为“替代者”“建议者”“对话者”。

一、“替代者”方案让AI全面替代人类作道德决策,但存在剥夺人类自主性和道德能力、阻碍道德进步等问题;

二、“建议者”方案让AI根据用户的个人道德准则提供道德建议,更加尊重个人自主性,但仍存在用户角色被动、缺乏道德反思和进步等问题;

三、“对话者”方案强调AI与人类用户的持续对话,帮助用户优化自身的道德观念,被认为是当前所有AI道德增强提议中最为可取的,但仍存在时间成本高、缺乏道德动机和深入思考动力等弊端。

3.作为更优替代的混合进路

本文提出了一种混合式道德增强AI方案作为更优选择,该方案结合了“替代者”“建议者”“对话者”三种AI模式,以适应不同情境下的道德决策需求。同时,本文从技术可行性和混合式AI的价值两个方面论证了这种方案的优越性,并讨论了其局限性和应对策略,包括将AI道德增强与生物医学道德增强相结合,以及将AI道德训练纳入义务性培训中。

道德增强的哲学论辩源于对人类生存危机的担忧,生物医学道德增强因技术与道德缺陷而被人工智能道德增强所取代。人工智能道德增强的三种方案(“替代者”“建议者”“对话者”)均存在缺陷,因此应发展混合式AI以适应不同情境。然而,混合式AI在增强道德动机上有局限,需要改良生物医学增强技术,并利用义务性培训激励人们接受AI道德训练。同时,混合式AI的设计原则及如何防范其在隐私、开发者操纵、个人道德责任等方面的风险,仍需学界共同探讨。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUnQp9iTfJ0U4_4yCVa4JWXsDo4CAYgOiqAB8RxYRaMXeVNjVcQA5GXX43lhlQFw_y19yXenfq6qC3zJrYyqLbx1pnFsQiJt499CIZ2QADmQglwREFo5jj_gng5kEUT2ANHr_awf0EOmAE5a51OGPlg_vtfR6qgLLDrWoG_eWPV5bQ6n1j3XcAY&uniplatform=NZKPT&language=CHS

十四、论文:周安华,王露涓.人工智能浪潮下电影文体创新的契机与空间[J].民族艺术研究.2024,3:5-13.

21世纪的今天,艺术与人工智能相遇,艺术的矛盾性与多义性不会因算法的出现而有所减少,本质上艺,术创作是人类难以被人工智能根本超越的天赋能力。当然,今天的人工智能通过模仿而产生的艺术作品已经达到一定的高度。与此同时,AI也在引发电影行业的整体性焦虑。尽管如此,我们也可以换一种视角,将AI给电影带来的冲击视为电影艺术历史性变革的一个契机。

1.人工智能的影像创造意义

生成式多模态模型模拟真实世界的物理效果,所生成的影像向真人、真实场景等无限逼近。在模仿真实的意义上,可以用巴赞曾提出的“现实的渐近线”来描述这类视频。随着生成式多模态AI的快速迭代升级,这类视频将越来越贴合人类脑海中的想象图景,人们将越来越难以识别视频的创作者,也将越来越自觉地放弃对视频创作者是真人还是AI的追问。显然,AI如火如荼的发展,让克拉考尔那种把对物质现实的复原视为电影本质追求的观点,变得不再适用,区别电影与人工智能影像亦变得更为困难。人工智能创作的作品是否具有艺术价值,根本上取决于使用者的想象力,与全人类可共鸣的普适情怀紧密相连。人工智能并不具有人类日常文化意义上的意识,王峰认为,人工智能的“意识涌现说”是概念系统的错误并置导致的概念溢出,人类系统下的文化概念关联不能直接平移于人工智能系统中。不过,即使无法拥有想象力,人工智能所展现出的卓越的联想力,亦是人类不得不惊叹的。需要指出,广泛应用人工智能生成视觉奇观的电影往往更容易落入奇观消费的陷阱。因其空有极其炫目的视觉景致堆砌,却缺乏一个能够触动观众的故事和对真现实主义的把握,这会造成电影叙事的逻辑性和有效性的消解。

2.超越人工智能:电影文体与文体自觉

对当代电影而言,文体是可以创造的。自觉的文体意识一方面能使创作有章可循,另一方面能极大地激发电影艺术工作者的创作潜能,并且,在多种实验性开拓之后依然不游离其根本——电影的本性。电影文体的建构是电影现代性的基石, 这是一部电影将其意图与内涵有效传播给观众的一种具有代表性的媒介属性,它能够使受众对电影产生一种被“框定”的生命感性认知。无论电影的风格、题材是偏重现实主义还是浪漫主义的,其所采用的电影文体都能在体现民族性美学元素的同时,传达超越民族的人类命运共同体精神。

3.人机互动:新电影文体深植于本土美学中

人工智能时代的人机互动,具有极大的影像创制意义和前景。由此,中国电影要注重对中华优秀传统文化的吸纳、接续和继承,并努力以多样化的呈现方式将其演绎。同时,要站在当代性的立场上,贯通古今哲思与情感,以丰富的电影文体和文本,借古喻今或以古写今, 唤起国人的民族记忆、激活埋藏在国人心中的深厚家国情怀,并在此基础上努力观照当代社会现实,反思社会变革历史,以强烈的民族性、主体性和现实性笔触,描绘近百年以来波澜壮阔的中华民族伟大复兴历程。而所有这一切,就要求我们的电影创作者不畏电影文体的挑战,不断开辟崭新的银幕空间,灵活利用人工智能,在或虚拟或真实、或写实或写意、或历史或现实的艺术空间中,去探求、表意、言情和勾画,在历经千百年而始终焕发光彩的中国哲学、诗赋文化、民间传奇等深入领悟的基础上,创制出更多令人惊叹的中国形象。

链接: https://kns.cnki.net/kcms2/article/abstract?v=RyE_S26iMhUPvGhnDt5yVlKHOdkQjMZpqHO-TG8PqHwaHzqsKDLYA9WhCkTewAFc37FD-HuKfHKiJ1l0Sa2TwyjaXsZgGDQqsiB1NzSDre4j8xEON_F2qCFxmJvpWr8QmvqnrfU0NCWckjkXEtfcCY-FCXuuEhZgmo6w1ygj1_DDJQ63anOip-hovCEZZB_1&uniplatform=NZKPT&language=CHS

十五、论文:张平.人工智能伦理治理研究[J].科技与法律(中英文).2024,5:1-12.

伦理治理应当成为人工智能治理的首要问题。智能技术凭借这种巨大优势正在酝酿和重塑新的世界观和价值观。本文尝试勾勒人工智能伦理问题的基本范畴,建立有效伦理审查的逻辑理路和搭建伦理审查的基本原则。

1.人工智能伦理问题的基本范畴

人工智能伦理既不同于传统的科技伦理和社会伦理,又与两者有密切交叉关系。在理论层面,科学技术本身是价值中立的,但实践行为需要接受道德上的评价。一方面,人工智能具有一定的自主性和决策能力,具有较强的复杂性和颠覆性。另一方面,人工智能伦理不仅涉及技术的研究过程,还与技术的应用密切相关,覆盖了从研发到部署的整个流程。人工智能伦理包含通用的科技伦理原则,又与其他科技领域中的科技伦理有明显的特殊性。

人工智能伦理与社会伦理之间有着密切的关系,二者相辅相成,互为影响。人工智能伦理是社会伦理在特定技术领域的延伸和具体化。它不仅要遵循社会伦理的基本原则,还要应对人工智能技术带来的特定挑战和问题。

深度伪造(Deep fake)技术是指利用机器学习技术生成逼真的视频或音频文件,创建出虚构但能以假乱真的内容。人工智能技术可以被用于各种形式的欺诈(Fraud)活动。算法黑箱使用户和受影响者无法理解或质疑算法的决策,缺乏透明性的问题在伦理上会引发对公平性和责任的担忧。人工智能在数据收集和分析方面的先进技术能力,虽为社会带来了诸多便利,但同时也引发了隐私侵犯(Privacy Invasion)的伦理风险。通过先进的数据分析技术,可以从公开合法获取的非敏感信息中综合推断出个人的敏感信息,这无疑增加了识别和处理个人敏感信息的难度,传统的保护方式面临严峻考验。

2.人工智能伦理审查的理论逻辑

面对人工智能技术带来的伦理挑战,科技企业、科研机构和监管部门都在不断探索对人工智能进行规制的可行方案。伦理审查制度的建立,人工智能伦理审查的道德逻辑,人工智能伦理审查的政策逻辑,已经成为人工智能科技伦理治理的重要措施。

出于人工智能技术和传统生命科学在技术原理和发展态势的差异,应创新相关审查标准和范式。其一,人工智能研发涉及多个行业场景和应用领域,其中部分研发活动并不存在严重的道德风险。因此,应当合理划定伦理审查的范围。其二,需要针对人工智能技术重新设计能够平衡各方利益的程序透明规则。其三,人工智能伦理审查需要涵盖数据采集、程序设计、模型训练等研究阶段。

作为人工智能治理体系中的重要制度创新,人工智能伦理审查不仅具有道德层面的正当性,更具有深厚的政策逻辑。首先,科学共同体的自治监督已经难以满足人工智能伦理监管的现实需求;其次,伦理审查制度有助于增进社会对人工智能技术的理解和接受;再次,伦理审查制度也有助于提升我国在全球人工智能科研与产业领域的话语权和竞争力;最后,前瞻式的伦理审查制度具有灵活性,更适应新兴科技的治理要求。

3.人工智能伦理审查的原则建构

构建人工智能伦理审查的原则,应以“人本主义”作为制度构造的逻辑起点,并以此为基础实现科技的“智能向善”。回归“人本主义”的逻辑基础,对于人工智能伦理审查不仅仅需要思考技术对于人类具体人权的冲击,还应客观衡量技术“智能向善”所造成的公共利益挑战。基于透明度和问责制的因果关系实现人工智能伦理的有效评估,是确保人工智能技术研发与应用结果公平公正的必然要求。透明度与问责制的因果联系还要求人工智能伦理审查构建相应的问责救济原则,确保个体以及公众的合法权益得以维护。

对于因人工智能所造成的伦理风险,应确保技术发展的稳定性以及权益保障的稳定性,并基于监管责任保障稳定性的落实。人工智能伦理审查中稳定性原则要求最明显地体现为人工智能技术的鲁棒性与安全性。人工智能伦理审查稳定性原则的实现无法脱离监管责任的保障。

人工智能作为数字化时代下的产物,其发展并未完全摆脱以“人”为核心的使用目的,人工智能并非纯粹的“智能”产物。在推动技术深层次迭代的同时,以一种与经济、社会、人文高度融合的样态实现“人文主义”的关怀,并基于“善”的目的推动人工智能向“上”发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值