2025年开篇|AI Agent与多模态大模型:智能革命的新纪元

回首2024年

2024年,AI能力不断进化,各类AI应用也遍地开花,理解语义、生成高质量文本内容已成常态,AI情感陪伴与人类“共情”,AI助手为几百页英文判决做摘要,视频生成模型的高歌猛进使得AI闯入电影制作领域……如果说2023年是百模大战、千模大战,那2024年则是应用之战,新一代的AI技术正在开始进入普通人的工作与生活。

下面这张图回顾了2024年主要的AI大事纪!如需高清原图,请后台私信“2024”!!

本图片引用自 @AI研究室-帆哥

转载或商业用途需注明来源

免责声明:本大事记经过一定筛选,带有一定倾向性,但不包含任何广告或其他商业考量,仅以新闻热、度与大众反响为依据。仅代表个人看法,如有遗漏请谅解。

2025年开篇

大模型的出现,成了AI第三次浪潮的新拐点。

正值**“Scaling Law是否撞墙”**热议之际,北京智源人工智能研究院院长王仲远表示

“看过去七、八十年,每一次新的科技浪潮背后都有一些本质规律,即随着模型参数、训练数据及计算能力提升,模型效果也会有巨大提升。

也就是说,如果拉长时间维度,其实Scaling Law在人工智能发展领域中一直起着作用。”

在这个技术突飞猛进的时代,人工智能正以前所未有的速度重塑我们的世界。作为一个长期关注AI技术的观察者,我见证了一个令人兴奋的转折点:AI Agent和多模态大模型正在开启智能技术的全新纪元。

AI Agent:智能自动化的新形态

当我第一次听说像Devin这样的AI Agent时,内心的震撼难以言表。这不仅仅是一个简单的自动化工具,而是一种可以主动思考、规划和执行复杂任务的智能系统。

Venturebeat: Inside the AI agent revolution指出,2024年是AI Agent真正爆发的一年。数据显示,82%的技术高管计划在未来三年内将AI Agent集成到他们的技术栈中。这意味着什么?意味着我们正站在一个技术革命的前夜。

AI Agent的关键特征

  1. 自主决策能力:不再是被动执行指令,而是能主动分析、规划和调整策略

  2. 多工具协作:可以同时使用多种工具和平台,实现复杂任务

  3. 持续学习:通过不断的实践和反馈,不断优化自身性能

多模态大模型:打破模态边界

多模态大模型正在彻底改变我们对人工智能的认知。北京智源人工智能研究院:王仲远演讲中提到的一个关键观点深深触动了我:原生统一的多模态大模型才能真正实现人工智能对世界的感知、理解和推理

从单模态到多模态,从AI迈向AGI

过去,AI模型往往局限于单一模态。但现在,像智源的Emu3这样的多模态模型已经能够将视觉信号和文本统一为token,通过类似大语言模型的训练架构,实现了跨模态的智能。

**多模态较单一模态更进一步,已经成为大模型主战场。**人类通过图片、文字、语言等多种途径来学习和理解,多模态技术也是通过整合多种模态、对齐不同模态之间的关系,使信息在模态之间传递。

2023年以来,OpenAI发布的GPT-4V、Google发布的Gemini、 Anthropic发布的Claude 3均为多模态模型,展现出了出色的多模态理解及生成能力。

未来,多模态有望实现any to any模态的输入和输出,包括文本、图像、音频、视频、3D模型等多种模态。

这意味着什么?意味着AI正在突破模态的藩篱,向着更接近人类认知的方向前进。

阿里云通义千问的价格大幅下降就是最好的佐证。1元钱可以处理600张720P图片,这不仅是成本的降低,更是技术民主化的体现。

多模态模型的能力令人惊叹

  • 可以处理不同分辨率和长宽比的图片

  • 能理解长达20分钟的视频

  • 具备自主操作手机和机器人的视觉智能体能力

企业级应用:从概念到现实

AI技术不再是实验室里的玩具,它正在真实地改变企业运营方式。Blockworks: AI Agents Solana Hackathon报道中提到,仅在一次黑客马拉松中,就有超过400个AI Agent项目参与竞争,总市值已超过2亿美元。

技术融合与产业变革

**多模态大模型和AI Agent的融合正在重塑产业边界。**从数据处理到创意生成,从代码编写到复杂决策,AI正在渗透到各个工作领域。

谷歌云的Gerrit Kazmaier指出,AI Agent能够自动化数据团队的手工工作,缩短数据管道和分析的周期。这意味着什么?意味着过去需要大量人力的工作,现在可能只需要几个智能Agent就能完成。

应用场景

  1. 数据分析:自动整合、分析和洞察复杂数据集

  2. 客户服务:提供24/7的智能交互和问题解决

  3. 软件开发:辅助编程、代码审查和自动测试

  4. 创意工作:协助内容生成和创意头脑风暴

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值