一文搞懂DeepSeek - 李飞飞26分钟“蒸馏”S1?

李飞飞团队凭借不到50美元的云计算成本,成功研发出高性价比的推理模型S1。在数学和编程能力测试中,S1的表现与OpenAI的o1、DeepSeek的R1等顶尖模型旗鼓相当,其实力不容忽视。

S1的诞生,得益于李飞飞团队采用的“蒸馏”技术。该技术使S1能够通过模仿学习其他模型的答案,提炼出强大的推理能力。为了进一步提升S1的智能水平,团队精心设计了1000个问题及答案,并收集了谷歌Gemini Thinking Experimental在回答问题时的思考过程生成数据集。S1对现成的预训练模型(Qwen2.5)在该小型数据集上(1k)进行了监督微调(SFT),在16个H100 GPU上仅需26分钟的训练时间,成本仅为约20美元。

一、蒸馏 or 微调

S1模型是蒸馏(Distill)or 微调(SFT)S1模型成功地将蒸馏和微调结合在一起,通过蒸馏学习其他模型的输出并提炼出优异推理能力,然后在开源基础模型上进行监督微调,实现了低成本高效能的AI推理模型。

  • 蒸馏(Distill):S1模型从谷歌的Gemini 2.0 Flash Thinking Experimental模型中蒸馏出了推理能力。蒸馏技术能够大幅降低模型训练的成本,但需要注意的是,蒸馏出来的模型在性能上可能无法超过被蒸馏的模型。

  • 微调(SFT):S1模型的训练并非从零开始,而是基于通义千问(Qwen2.5)模型进行了监督微调(SFT)。

S1模型通过蒸馏技术从开源基础模型Gemini 2.0 Flash中汲取了强大的推理能力,并在此坚实基础上,通过监督微调进行了进一步的优化。这一过程使得S1模型即便在小数据集上也能展现出低成本高效能的表现。

Gemini app adding 2.0 Pro and 2.0 Flash Thinking Experimental

S1模型如何构建推理数据集?遵循质量、难度和多样性三个原则,从初步收集的59,029样本中经过三轮严格筛选,最终确定了1000高质量、高难度且领域多样的推理数据集,用于监督微调模型。

二、RL ****Test-time scaling****

****新型缩放范式-测试时缩放(Test-time scaling)是什么?测试时缩放是一种在模型测试阶段通过调整计算资源来提高模型性能的方法。测试时缩放方法分为两类:

  • 1) 顺序缩放,其中后续计算依赖于先前计算(例如,一个长的推理轨迹);

  • 2) 并行缩放,其中计算独立运行(例如,多数投票)

Language Model Scaling Laws: Beyond Bigger AI Models in 2024 | Medium

近年来,大语言模型(LLMs)性能的提升得益于大规模无监督预训练与有监督微调(Pre-training + Fine-tuning)。

但OpenAI-o1、DeepSeek- R1等强大模型的诞生,为构建在这些模型基础之上的新型缩放范式——测试时缩放——奠定了坚实的基础。测试时缩放作为一种新兴的方法,旨在通过调整测试阶段的计算能力来进一步优化模型的表现。这一范式利用了已经训练好的强大模型,在模型进行预测或推理时,通过增加计算量(如迭代次数、模型大小、数据使用量等)来获得更准确或更可靠的结果

Understanding and Using Supervised Fine-Tuning (SFT) for Language Models

大模型强化学习(RL)可以实现测试时缩放OpenAI-o1******模型展示了强大的推理性能,并且随着测试时计算能力的缩放,其性能持续提高。**OpenAI将其方法描述为使用大规模强化学习(RL),这意味着使用了大量数据。

DeepSeek-R1成功复制了o1级别的性能,同样通过数百万个样本和多个训练阶段使用了强化学习

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### DeepSeek-R1 本地部署教程 快速上手指南 #### 环境准备 为了确保顺利安装和运行,建议先确认计算机满足最低硬件要求,并已安装必要的软件依赖项。这通常包括 Python 版本兼容性和其他开发工具包。 #### 步骤一:获取源码或镜像文件 可以从官方渠道下载最新的 DeepSeek-R1 发布版本或者 Docker 镜像。对于大多数用户来说,使用预构建的 Docker 镜像是最简单的方式[^1]。 ```bash docker pull deepseekai/deepseek-r1:latest ``` #### 步骤二:初始化配置 启动容器前需创建并编辑配置文件 `config.yaml` 来指定数据路径和其他参数设置。此步骤允许自定义存储位置以及调整性能选项以适应具体应用场景的需求[^2]。 ```yaml data_path: "/path/to/data" log_level: "INFO" ... ``` #### 步骤三:启动服务 一切就绪之后就可以通过命令行来启动 DeepSeek-R1 的实例了。如果选择了 Docker 方式,则可以利用如下指令: ```bash docker run --name=deepseek-r1 -v /local/path:/container/path -p 8080:8080 deepseekai/deepseek-r1 ``` 上述命令会映射端口并将主机目录挂载至容器内以便访问外部资源。此时应该能够通过浏览器或其他 HTTP 客户端连接到正在监听的服务接口地址 http://localhost:8080/ 进行交互测试。 一旦完成了这些基本设定,便可以根据实际业务逻辑进一步探索更多高级特性的应用可能性,比如集成第三方 API 或者训练定制化模型等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值