在实现使用的智能电话系统,不止一次遇到客户说你们的系统是智障,不是智能,事实上,基于正则、关键词等的话术处理,殊途同归,都是依靠的话术的制作和分析,关键词及正则的合理性等。但是前段时间获得诺奖的几位大佬,我在某些场合中更乐意称呼他们:人类灭绝计划的策划者或参与者。他们让神经网络的发展达到了我认为我是笨蛋的程度,按这些方向的发展,人到底未来能做什么?
但是,时间在向2024年后走着,现有科技也不可能让它们回归到没有这些技术,所以我们还是不得不往前地,心情纠结着做着那些事。结合以前的系统来改进,改成使用神经网络来处理对话,那么自然而然地少了一些智障,多了些智慧。
有智慧是好事,但是太有智慧就会让人为难了,所以还是需要进一步的把相关的边界要约束住,约束不住开大炮,那可能就给人在方方面面带来不好的体验了。所以基本的话术还是得控制一下:
功能大概的也就是以下几条吧:
-
革命性智能电话系统,客户零成本拥抱专属大模型,以超凡算力为基石,确保高并发场景下的推理与训练无忧,引领行业先锋。
-
专项优化的电话语音数据集训练,铸就98%的超高识别准确率。
-
智能识别三语合一,普通话、粤语、英语无缝切换;情感分析,精准捕捉客户情绪波动。
-
深度训练的NLP模型,洞悉电话对话上下文,意图理解正确率高达91.62%,让智能交互达到新高度。
-
突破性自学习机制,简化意图分类流程,AI智能分析客户意图,自主归类,开启智能客服新纪元。
-
人工智能与人工智慧完美结合,面对未知意图,智能记录、人工介入,构建无懈可击的意图分类体系。
-
智能对话流程优化,自动跳过已知信息,实现对话高效流转,无需人工干预,尽显智能魅力。
-
语义语境分析革新,摒弃传统标签判断,以人类对话思维洞察客户意向,大幅降低误判,精准把握商机。
-
知识库前置条件功能,精准触发问答,降低相似问题误判,提升对话智能程度,让智障提高智慧。
-
声音克隆技术,一键打造销冠音色,AI语音合成,宛如真人般亲切,一人销冠、无数销冠。
我们的智能电话系统,如同经过基础培训的新员工,自主学习,迅速成长,面对难题,请教即懂。相较于真人需数月的学习周期,AI仅需数千通话即可精通。我们的大模型驱动智能电话系统,通话越多,学得越多,响应越快,开启智能客服新篇章。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。