随着人工智能和自然语言处理(NLP)的快速发展,智能问答系统和对话机器人已经深刻改变了人机交互体验。特别是在客服、教育、电子商务等场景中,智能问答系统的准确性和效率大幅提升。
本文将探讨其中的核心技术之一——RAG(检索增强生成),以及如何通过意图识别和槽位填充,进一步提升对话的准确度和自然度。
RAG的全称是Retrieval-Augmented Generation,是一种将知识检索和语言生成相结合的模型。RAG的核心目标是利用外部知识库(如文档库、百科等)增强生成回答的能力。
与传统的仅依赖预训练语言模型回答不同,RAG通过检索知识库中的信息辅助回答生成,尤其适用于需要广泛知识支持的场景。
RAG的工作流程分为三个阶段:
-
检索阶段:通过向外部知识库发送查询,从海量数据中筛选出最相关的内容。
-
增强阶段:将检索得到的信息整合并传递给生成模型,形成上下文增强。
-
生成阶段:利用检索到的信息,生成更准确、相关的回答。
然而,RAG的准确性不仅依赖于检索和生成,还需要精准的意图识别和槽位填充来理解用户需求、推导出最有效的对话路径。
意图识别:理解用户需求的第一步
在问答对话中,准确理解用户的意图是构建有效回答的关键。意图识别,即判断用户想要什么,相当于为系统定向,帮助系统更精确地选择回答的路径。例如,当用户询问“预定电影票”,系统必须确定用户想预定的是电影票,而非航班或酒店。
意图识别的难度在于:
-
多意图问题:用户的表达可能含有多个含义,例如“订机票”和“预定酒店”。
-
语义模糊:用户输入不规范,或语言表达不标准,如错别字等。
-
上下文理解:不同场景和时间节点下相同的表达可能具有不同的意图。
常用的意图识别方法包括:
-
规则模板匹配:通过人工设定模板,如“从[地点]到[地点]的航班”,将用户输入与模板匹配,从而判断意图。虽然精确度高,但需大量人力维护,不易推广。
-
统计机器学习:通过提取文本特征,如词性标注和词向量化表示,借助支持向量机等模型进行分类。适合简单的分类,但在复杂意图下效果有限。
-
深度学习:借助神经网络和预训练模型,无需人工设计特征,自动完成意图分类。尽管效果好,但需要大量标注数据。
在RAG系统中,意图识别是基础的前置任务,它将用户输入映射到最可能的意图,为后续的回答生成奠定基础。
槽位填充:精准回答的“填空”游戏
在理解用户意图之后,系统还需要确定请求的关键信息,这一步就是槽位填充。以“订电影票”为例,系统不仅需要知道用户的意图是“订票”,还需确定具体的电影名称、时间、电影院等信息。这些信息的收集和预测,就是槽位填充的过程。
槽位填充技术通过序列标注模型,标注出语句中的关键实体。例如,在“订一张今天下午的战狼电影票”中,系统识别“战狼”为电影名,“今天下午”为时间。然而,如果有信息缺失(如影院名称),系统则可根据上下文进行预测(例如利用用户地理位置预测最近影院),或询问用户进一步确认。
常见的槽位填充方法包括:
-
命名实体识别(NER):识别并分类实体为地点、时间等。例如,“广州到上海”被识别为地名。
-
槽位预测:当信息缺失时,通过其他渠道(如用户位置)进行预测,减少用户交互,提高效率。
通过槽位填充,系统不仅可以填补信息空白,还能精准获取用户需求,有效支持RAG系统在复杂任务下的回答生成。
RAG、意图识别和槽位填充的融合应用
在智能问答中,RAG系统和意图识别、槽位填充共同提升对话的自然性和准确度。其主要应用包括:
-
提高效率:意图识别快速确定用户需求,RAG检索增强生成提供丰富知识,槽位填充弥补关键信息,使系统能快速生成准确回答。
-
提升用户体验:通过准确识别意图和预测槽位,避免频繁提问,提升用户交互的顺畅度和个性化体验。
-
智能化决策支持:RAG与意图识别、槽位填充的结合,使对话系统具备更强的逻辑推理和建议功能,支持更智能化的决策。
在本文使用的模型中对数据进行了扩充、对代码进行注释、对部分代码进行了修改。
https://arxiv.org/abs/1902.10909
[1902.10909] BERT for Joint Intent Classification and Slot Filling (arxiv.org)
https://github.com/monologg/JointBERT
GitHub:BERT for Joint Intent Classification and Slot Filling
https://github.com/Linear95/bert-intent-slot-detector
总结
RAG、意图识别和槽位填充的结合,赋予了智能问答系统以更强的理解能力和回答生成能力。未来,这些技术将进一步优化,从而为智能问答系统和对话机器人带来更多的应用潜力和发展机会。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。