Phi-4的模型参数量是14B,这使它在推理的时候比较耗费内存。因此如果我们想要在边缘端运行,需要对它进行量化。量化的手段很多,此前也介绍过,使用Auto-Round GTPQ格式的方法量化即可。
我们看一下量化到四位以后,推理时候占用的显存以及效果。
针对量化版本,我写了一个vLLM推理的程序,推理速度很快,占用11GB显存,推理的结果也很准确。这样我们就可以在消费显卡上运行Phi-4了。
推理代码见我的repo:https://github.com/xinyuwei-david/david-share.git 下的
DeepLearning/Phi4
欢迎给我的repo点亮星星,这是一种鼓励。
接下来,我介绍点Phi-4整体的架构。
近期,微软推出了最新的大型语言模型Phi-4,它在保持相对较小参数规模的情况下,展示了令人瞩目的性能。Phi-4通过创新的训练方法和高质量的数据,在多个自然语言处理任务中取得了优异的成绩。本文将详细介绍Phi-4的模型架构、训练策略、性能表现,以及如何在本地计算机上对其进行微调。
一、Phi-4简介
Phi-4是微软Phi系列模型的最新成员,参数量为140亿。这一规模在大型语言模型中属于中等,但Phi-4通过精心设计的训练流程和数据,展现出了与更大参数量模型相媲美的性能。
二、模型架构与特点
1. 基于Transformer的架构
Phi-4采用了经典的Transformer解码器架构,共有40层网络结构。这种架构在自然语言处理任务中被证明是高效且有效的,能够捕捉文本序列中的长期依赖关系。
2. 上下文长度的扩展
初始的Phi-4支持4,096个Token的上下文长度。在中期训练阶段,微软将上下文长度扩展到了16,000个Token,使得模型能够处理更长的文本输入,适应更多样化的任务需求。
3. 分词器与词汇表
Phi-4使用了OpenAI的tiktoken分词器,词汇表大小为100,352。这一选择兼顾了多语言支持和分词效果的优化。
4. 注意力机制与位置编码
Phi-4在模型中使用了全局注意力机制(Full Attention),对整个上下文序列进行自注意力计算。此外,模型采用了旋转位置编码(RoPE)并在中期训练中调整了基频,以适应更长的上下文长度。
三、创新的训练策略
1. 合成数据的广泛应用
与传统模型主要依赖互联网抓取的数据不同,Phi-4大量使用了合成数据进行训练。微软通过多种技术生成了大约4,000亿个Token的高质量合成数据,包括:
-
多代理提示:利用多个语言模型生成多样化的数据。
-
自我修正流程:模型生成初始输出后,进行自我评估和修正。
-
指令反转:从已有的输出生成对应的输入指令,增强模型的指令理解能力。
合成数据具有结构化、渐进式的特点,能够引导模型逐步学习复杂的推理和问题解决能力。
2. 精选的有机数据
除了合成数据,Phi-4还从多种来源精心挑选了高质量的有机数据,如网页内容、书籍、代码库和问答集合。通过严格的过滤和去重,确保了数据的高质量和多样性。
3. 多阶段训练流程
Phi-4的训练分为多个阶段:
-
预训练阶段:建立模型的基础语言理解能力,使用了约10万亿个Token的数据。
-
中期训练阶段:扩展上下文长度至16,000个Token,进一步提升模型的性能。
-
后训练阶段(微调):通过监督微调(SFT)和直接偏好优化(DPO)等方法,优化模型的输出,使其更符合人类的偏好。
四、先进的训练技术
1. 关键Token搜索(PTS)
PTS是一种创新的训练方法,通过识别对模型输出影响最大的关键Token,针对性地优化模型在这些位置的预测。这种方法提高了训练效率,增强了模型在关键决策点上的表现。
2. 改进的直接偏好优化(DPO)
在DPO过程中,Phi-4结合了PTS方法,使用高质量的偏好数据优化模型的输出。通过评估模型在关键Token上的表现,进一步提升了优化效果。
五、性能评估
1. 外部评测基准
Phi-4在多个公开的评测基准上表现出色:
-
MMLU:在多任务语言理解测试中取得了优异成绩。
-
GPQA:在研究生水平的STEM问答中表现突出。
-
MATH:在数学问题解决方面展现了强大的能力。
-
HumanEval:在代码生成和理解任务中超越了同等规模的模型。
2. 内部评测套件(PhiBench)
微软开发了内部评测套件PhiBench,涵盖了代码调试、代码补全、数学推理等任务,帮助团队深入了解模型的能力和不足,并有针对性地进行改进。
六、模型的局限性
尽管Phi-4性能强大,但仍存在一些局限性:
-
指令遵循能力:在严格格式化输出方面表现不佳。
-
冗长的回答:有时会对简单问题给出过于详细的答案。
-
对话能力:优化于单轮查询,缺乏持续对话的能力。
这些局限性主要源于模型的训练重点在于推理和问题解决,而非对话或指令遵循。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。