不同规模、不同预算、不同数字化基础的企业应用DeepSeek,有不同的解决方案路径。这篇文章主要从技术实现难度角度分析,三种不同方式下的适用场景、相关案例、对企业在数据和硬件方面的要求等。
入门模式:大模型+知识库搜索
在此模式下,企业主要利用DeepSeek的大规模预训练模型来进行文本理解和自然语言处理。配合企业内部的知识库进行搜索,帮助企业高效地检索相关信息、文档和数据。适用于企业需要快速获取知识和信息支持的场景。
适合:初创企业、中小型企业,或者在AI技术应用上处于起步阶段的企业。
场景举例↓
客户服务自动化:利用知识库和大模型进行客户问题的智能回答,提升客服效率。
信息检索与分析:企业内部知识库的高效搜索和分类,帮助员工快速找到所需信息。
智灵动力相关项目案例:某软件与信息服务商企业通过DeepSeek的简单模式,成功实现了面向内部员工的文档检索与业务问答的自动化。通过接入产品知识库,系统能够根据用户的提问自动检索相关信息,提供准确而综合的答案参考,大大提高了员工的工作效率。
企业需要提供:主要是已有的知识库资源及文档,但为了保证检索准确性,需要知识库信息准确、及时更新、筛除低质量或者不相关数据。硬件支持要求较低。
进阶模式:大模型+业务数据接入
中期模式则在简单模式的基础上,增加了业务数据的接入。企业可以将自身的业务数据(如客户数据、销售数据等)引入DeepSeek平台,通过大模型对数据进行深入分析和预测。
适合:已经有一定规模的企业,具备一定的数据资源,且希望进一步提升业务智能化水平的企业。
场景举例↓
销售预测与市场分析:通过业务数据与大模型的结合,对市场趋势、销售数据进行预测,帮助企业优化资源分配。
个性化推荐系统:基于用户历史数据和行为分析,提供个性化的产品推荐,提升用户体验和转化率。
智灵动力相关项目案例:某规模较大的文旅集团,此前客服回复游客咨询时,信息精准度和推荐个性化不足。为解决这些问题,集团接入DeepSeek 平台,引入客户的旅游偏好、消费习惯等客户数据,以及各旅游线路销售情况、景点预订数据等销售数据。接入后,当游客咨询周末轻松短途旅行时,平台能根据其历史数据和最新优惠活动,精准推荐含周边自然景区、特色农家乐且有折扣的路线。对于景区特色、住宿条件等细节问题,也能准确作答。这一举措提升了客服满意度和业务转化率,实现了业务智能化水平的提升。
企业需要提供:除了知识库外,企业需要提供业务数据接口及系统接入支持,硬件上需要较强的计算能力和存储能力。
高阶模式:数据训练与自适应
在高阶模式中,企业不仅可以接入外部数据和业务数据,还可以利用DeepSeek对数据进行训练,进一步优化模型以适应企业的特殊需求。技术供应商需要具备强大的数据处理能力、深厚的机器学习技术、以及高效的训练平台与持续的技术支持,帮助企业在市场中保持竞争力。
适合:大中型企业,特别是那些有海量业务数据和对深度智能应用有高要求的企业。
场景举例↓
精准营销与客户生命周期管理:企业通过持续的数据训练和模型优化,提升精准营销能力,实现客户生命周期的精准管理。
供应链优化与需求预测:企业通过将历史销售数据、库存数据、市场趋势和季节性因素等多维数据接入DeepSeek,利用高级推理能力进行实时分析,优化供应链管理。从而达到提前调整生产计划和库存策略,减少库存积压和缺货情况,提升供应链效率,降低运营成本。
企业需要提供:需要提供量级更大的业务数据、持续的数据更新和训练支持,同时硬件方面需要具备较强的计算集群支持,以应对大数据处理和模型训练的需求。
深度定制化解决方案,助力企业智能化转型
根据企业的实际需求,我们可以为您量身定制DeepSeek综合运营方案,涵盖从系统接入、数据分析到模型优化的全程技术支持。
我们提供:
个性化的DeepSeek解决方案:根据企业特点定制最佳AI应用路径。
全面的技术支持:从接入系统到数据分析,提供全程技术保障。
持续的服务保障:确保系统稳定运行并定期优化,满足企业不断变化的需求。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。