使用视觉语言模型(VLMs)进行目标检测

在过去,你必须自己训练模型,收集训练数据,但现在许多基础模型允许你在它们的基础上进行微调,以获得一个能够检测目标并与用户用自然语言互动的系统。有数百种模型和潜在应用场景,目标检测在这些场景中非常有用,尤其是随着小型语言模型的兴起,所以今天我们将尝试使用MLX上的Qwen2-VL-7B-Instruct-8bit。

我们将使用MLX-VLM,这是由Prince Canuma(Blaizzy)创建的一个包,他是一位热衷于开发和移植大型语言模型以兼容MLX的热情开发者,这个框架为我们用户抽象了很多代码,使我们能够用很少的代码行运行这些模型。现在让我们来看下面的代码片段。你会发现它非常简单。首先,你可以从Hugging Face定义模型,框架将下载所有相关组件。这个过程非常简单,因为这个库还提供了多个实用工具(apply_chat_template),可以将OpenAI的标准提示模板转换为小型VLMs所需的模板。

这里的一个重要注意事项是在编写代码时,这个库中的系统角色出现了一些问题,但未来很可能可以添加。但在本例中,我们在一个用户消息中传递任务和响应格式,基本上我们将要求模型识别所有对象并返回一个坐标列表,其中第一个顶部将是边界框的最小x/y坐标,后者将是最大坐标。同时,我们包括了对象名称,并要求模型以JSON对象的形式返回:

from mlx_vlm import load, apply_chat_template, generate``from mlx_vlm.utils import load_image``   ``   ``model, processor = load("mlx-community/Qwen2-VL-7B-Instruct-8bit")``config = model.config``   ``image_path = "images/test.jpg"``image = load_image(image_path)``   ``messages = [`    `{`        `"role": "user",`        `"content": """detect all the objects in the image, return bounding boxes for all of them using the following format: [{`        `"object": "object_name",`        `"bboxes": [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]`     `}, ...]""",`    `}``]``prompt = apply_chat_template(processor, config, messages)``   ``output = generate(model, processor, image, prompt, max_tokens=1000, temperature=0.7)``print(output)

运行前面的代码后,你将收到一个JSON响应,正确识别了两辆卡车:

[{`    `"object": "dump truck",`    `"bboxes": [`        `[100, 250, 380, 510]`    `]``}, {`    `"object": "dump truck",`    `"bboxes": [`        `[550, 250, 830, 490]`    `]``}]

鉴于我们有了对象名称和边界框坐标,我们可以编写一个函数将这些结果绘制在图像上。代码如下:

import json``import re``import matplotlib.pyplot as plt``from PIL import Image, ImageDraw, ImageFont``   ``def draw_and_plot_boxes_from_json(json_data, image_path):`    `"""`    `Parses the JSON data to extract bounding box coordinates,`    `scales them according to the image size, draws the boxes on the image,`    `and plots the image.``   `    `Args:`        `json_data (str or list): The JSON data as a string or already parsed list.`        `image_path (str): The path to the image file on which boxes are to be drawn.`    `"""`    `# If json_data is a string, parse it into a Python object`    `if isinstance(json_data, str):`        `# Strip leading/trailing whitespaces`        `json_data = json_data.strip()`        `# Remove code fences if present`        `json_data = re.sub(r"^```json\s*", "", json_data)`        `json_data = re.sub(r"```$", "", json_data)`        `json_data = json_data.strip()`        `try:`            `data = json.loads(json_data)`        `except json.JSONDecodeError as e:`            `print("Failed to parse JSON data:", e)`            `print("JSON data was:", repr(json_data))`            `return`    `else:`        `data = json_data``   `    `# Open the image`    `try:`        `img = Image.open(image_path)`    `except FileNotFoundError:`        `print(f"Image file not found at {image_path}. Please check the path.")`        `return``   `    `draw = ImageDraw.Draw(img)`    `width, height = img.size`    `# Change this part for Windows OS`    `# ImageFont.FreeTypeFont(r"C:\Windows\Fonts\CONSOLA.ttf", size=25)`    `font = ImageFont.truetype("/System/Library/Fonts/Menlo.ttc", size=25)  # Process and draw boxes`    `for item in data:`        `object_type = item.get("object", "unknown")`        `for bbox in item.get("bboxes", []):`            `x1, y1, x2, y2 = bbox`            `# Scale down coordinates from a 1000x1000 grid to the actual image size`            `x1 = x1 * width / 1000`            `y1 = y1 * height / 1000`            `x2 = x2 * width / 1000`            `y2 = y2 * height / 1000`            `# Draw the rectangle on the image`            `draw.rectangle([(x1, y1), (x2, y2)], outline="blue", width=5)`            `text_position = (x1, y1)`            `draw.text(text_position, object_type, fill="red", font=font)``   `    `# Plot the image using matplotlib`    `plt.figure(figsize=(8, 8))`    `plt.imshow(img)`    `plt.axis("off")  # Hide axes ticks`    `plt.show()

绘制结果如下:

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值