Weather Research & Forecasting Model(WRF)
天气研究和预报 (WRF) 模型是最先进的中尺度数值天气预报系统,专为大气研究和业务预报应用而设计。它具有两个动态内核、一个数据同化系统以及一个支持并行计算和系统可扩展性的软件架构。该模型适用于从几十米到几千公里的广泛气象应用。开发 WRF 的努力始于 1990 年代后期,是美国国家大气研究中心 (NCAR)、美国国家海洋和大气管理局(由美国国家环境预测中心 (NCEP) 和地球系统研究实验室代表)、美国空军、海军研究实验室、俄克拉荷马大学、 以及美国联邦航空管理局 (FAA)。
对于研究人员来说,WRF 可以根据实际大气条件(即来自观测和分析)或理想化条件生成模拟。WRF 为运营预报提供了一个灵活且计算高效的平台,同时反映了来自广泛研究社区的开发人员在物理学、数值和数据同化方面的最新进展。WRF 目前在 NCEP 和其他国家气象中心投入使用,并用于实验室、大学和公司的实时预报配置。WRF 拥有庞大的全球注册用户社区,NCAR 定期提供有关它的研讨会和教程。
1.建模系统概述
ARW 的方程集是完全可压缩的、欧拉式的和 非静液压,带运行时静压选项。标量是保守的 变量。该模型使用地形跟踪、混合 Sigma-Pressure 垂直 与模型的顶部为恒压表面为坐标。这 水平网格是 Arakawa-C 网格。模型中的时间积分方案 使用三阶 Runge-Kutta 方案,空间离散化采用 2 至 6 阶方案。该模型支持理想化数据和真实数据 具有各种横向边界条件选项的应用。该模型还 支持单向、双向和移动嵌套选项。它运行在单处理器上, 共享内存和分布式内存计算机。
下面的流程图说明了该组件 WRF 建模系统的程序。WRF 模型可以使用 理想化初始化或真实数据初始化。在模型中支持欧拉质量求解器,称为高级研究 WRF (ARW) 动力学求解器。理想的目的。F(粉红色)和 real_em。F (蓝色) 程序用于生成输入和(如有必要) WRF 模型的边界文件。这涉及静水平衡 调整以及设置初始 3D 和 2D 字段 WRF 变量。WRF 模型支持完整的物理场, 分析和观察推动。
1.1 数据预处理系统(WPS)
WPS主要用来定义模拟区域及网格,将外部数据源获得的地面静态数据(如地形、土地利用类型、土壤参数等)插值到模拟域,并将气象数据水平插值到WRF模拟域网格中,为WRF主程序程序提供所需数据。
WRF预处理系统(WPS)是一组三个程序,其集体角色是为真实数据模拟的真实程序准备投入。每个程序都执行制备的一个阶段:
-
geogrid定义了模型域,并将静态地理数据插入网格
-
ungrib从grib-formatted文件中提取气象场
-
Metgrid水平插值将ungrib提取的气象场插入地质网格中的模型网格。
在真实程序中,垂直插值的气象领域对WRF ETA级别进行了工作。
当有MPI库和合适的编译器可用时,可以编译metgrid和geogrid程序以进行分布式内存执行,该程序可使大型模型域在更少的时间内处理。 ungrid程序执行的工作不适合并行化,因此ungrid只能在单个处理器上运行。
1.2 WRF模型核心
WRF 模型核心是进行大气模拟的主要部分,分为 ARW(Advanced Research WRF)和 NMM(Nonhydrostatic Mesoscale Model)两种核心。ARW 核心是目前使用最广泛的,具有更多的研究功能和灵活性。
-
ARW(Advanced Research WRF)动态求解器是整个WRF模式的核心组成部分,将WPS前处理系统插值处理好的数据转化为指定格式的初始场和边界条件,并进行模式的积分运算。
-
NMM(Nonhydrostatic Mesoscale Model)
-
1.3 后处理工具
后处理具用于分析和可视化 WRF 模型输出的数据,一般采用NCL或者python。
WRF模式运用F90语言编写,采用完全可压缩及非静力的平衡模型,在水平方向采用ArakawaC(荒川C)网格点,垂直方向采用eta(地形跟随质量)坐标,时间积分上采用三阶或者四阶的Runge-Kutta算法。
基础方程式由运动方程、连续方程、状态方程、热力学方程、水汽方程等组成,通过将势能、位温导入基础的N-S方程并进行地形坐标变换后得到。
WRF基于用户定义的计算域上这些方程的有限差分或谱离散法,该计算域可以是曲线或伸展的,并且边界条件设置为静态、恒定或时间变化。这使得WRF能够模拟各种天气和气候条件,包括对流和非对流过程、降水、辐射和地表过程。
WRF模拟的输出数据可以采用许多形式,包括大气变量的格网化数据,例如空气温度、风速和风向以及降水,以及大气变量的垂直剖面。WRF输出可以保存在多种文件格式中,与其他建模和分析工具兼容,包括网络常用数据格式NetCDF和GRIB。
3 WRF的参数化方案
WRF还包括多个物理参数化方案,使用户能够将未在计算域中明确解析的子网格过程纳入模拟。在WRF中使用的物理参数化取决于多种因素,如所模拟的物理进程类型、该进程的尺度以及数值模型的分辨率。这些参数化包括:
3.1 微物理过程方案(Microphysics)
微物理过程可以通过调整温湿场结构及过程中水汽相变潜热的释放、降水粒子的拖拽作用,影响积云对流发生的条件,进而影响积云降水的预报。因此,以积云降水为主要因素的研究中微物理过程方案的选择非常重要。
常用的微物理方案包括:
-
Kessler Scheme:简单的暖雨方案,主要用于教学和理想化试验。
-
Lin et al. Scheme:包含六类水成物(云水、雨水、冰晶、雪、霰和雹)。
-
WSM(WRF Single-Moment)系列:如 WSM3、WSM5、WSM6,分别包含三到六类水成物。
-
Thompson Scheme:更加复杂,包含多种水成物和详细的冰相过程。
3.2 积云对流方案(Cumulus parameterization)
积云对流过程在暴雨等强降水天气的模拟预报中比较重要。
对流方案处理网格尺度无法解析的对流活动,如雷暴和对流云。常用的对流方案包括:
-
Kain-Fritsch Scheme:基于准平衡假设,适用于中尺度到区域尺度模拟。
-
Betts-Miller-Janjic (BMJ) Scheme:基于调整方法,适用于热带地区。
-
Grell-Freitas Scheme:多尺度对流参数化方案,适用于多重嵌套网格。
3.3 陆面过程方案(Land Surface Model, LSM)
中尺度模拟中需要考虑下垫面的非均匀性,且很难对复杂下垫面进行准确描述,即中尺度模式中能否将下垫面复杂性这一因素较为真实的加入到陆-气相互作用的物理过程中。
LSM 方案描述了地表能量和水分交换过程。常用的地表过程方案包括:
-
Noah LSM:考虑了地表温度、土壤湿度、积雪等过程,是最常用的 LSM 方案之一。
-
Noah-MP (Noah with Multi-Parameterization) LSM:改进版的 Noah LSM,提供了更多的参数化选项。
-
CLM (Community Land Model):详细的陆地过程模型,适用于高分辨率和长时间模拟
3.4 行星边界层方案(Planetary Boundary Layer, PBL)
行星边界层(PBL)是垂直网格尺度通量的发生地点,它在大气模式中的地位十分重要,不仅能影响低层大气要素,通过边界层的垂直输送也能对高层大气产生影响。
常用的 PBL 方案包括:
-
Yonsei University (YSU) Scheme:非局地闭合方案,考虑了混合层顶部的逆温层。
-
Mellor-Yamada-Janjic (MYJ) Scheme:局地闭合方案,基于湍流动能方程。
-
Quasi-Normal Scale Elimination (QNSE) Scheme:用于复杂地形和稳定边界层条件。
3.5 大气辐射方案(Radiation)
大气辐射传输方案对于模式模拟非常重要,辐射传输计算的准确度将直接影响到大气热力和动力状况,所以提高辐射传输方案的精确性,能够显著提高模拟降水分布和季节变化特征的能力。
常用的辐射方案包括:
-
Rapid Radiative Transfer Model for GCMs (RRTMG) Scheme:分为短波和长波部分,适用于各种气象条件。
-
Dudhia Scheme:简单的短波辐射方案,适用于晴天和多云条件。
-
CAM (Community Atmosphere Model) Scheme:包含详细的气溶胶和云辐射相互作用。
4 WRF的输入和输出数据
-
geogrid和ungrid属并列关系,运行不分前后
-
geogrid建立“静态的”地面数据
-
ungrid解压gridq气象数据,并归纳为应该intermediate文件格式
-
metgrid将气象数据水平插入模式领域内;metgrid的输出文件被用作WRF主模块的输入文件
4.1 WRF的输入数据
为初始化WRF模拟,用户必须提供 初始条件(Initial condition) 来定义模型运行开始时的大气状态。这些初始条件可能包括大气压力、温度、湿度和风速和方向,以及地表条件,如土壤湿度和植被覆盖。
WRF模型可以从各种来源获取数据,包括全球和区域再分析数据、卫星数据以及气象站和探空的观测数据。
WRF还需要模型边界处的气象数据,称为边界条件(Boundary Condition),以保持模拟的大气状态和模型域之外的大气状态之间的一致性。这些数据通常从全球模型,如全球预报系统GFS或欧洲中期天气预报中心ECMWF获取。
4.2 WRF的输出数据
WRF模拟的输出数据可以采用许多形式,包括大气变量的格网化数据,例如空气温度、风速和风向以及降水,以及大气变量的垂直剖面。
WRF输出可以保存在多种文件格式中,与其他建模和分析工具兼容,包括网络常用数据格式NetCDF和GRIB。
5 WRF的应用
WRF广泛用于许多气象和大气研究应用,包括短期天气预测、季节性和气候预测以及空气质量和大气化学建模。它的高分辨率输出和灵活性使其成为中尺度气象研究、大气边界层过程和边界层相互作用分析以及城市气象研究的重要工具。
WRF被全球的操作预报中心和研究机构广泛使用,包括用于日常天气预报以及有关气候变化和环境政策的研究。它已用于广泛的研究,包括:
-
热带气象和飓风预测(WRF-Hurricane):WRF已广泛用于研究热带风暴和飓风,包括预测风暴强度和路径,估计降水和潜在风暴潮,以及分析气候变化对热带气旋的影响。
-
空气污染建模(WRF-Chem):WRF用于模拟大气化学输运,分析空气污染物的时间和空间模式,以及预测排放减少政策和其他干预措施对空气质量的影响。
-
可再生能源预测(WRF-Solar):WRF用于模拟风能和太阳能资源,并为可再生能源的功率输出开发概率预测。
-
气候变化和适应规划(WRF-DA):WRF可以用于基于不同温室气体排放情景调查区域气候的响应。
-
实时天气预报和预测、LUCC、农业、大气污染模拟)
-
未来气候变化评估
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。