前言
在对数据集建立索引时,GraphRAG主要完成两项核心任务:
-
提取实体(Entity)
-
提取实体之间的关系
从视觉角度看,每个实体就是图谱中的一个“点”,而实体之间的关系则通过“线”连接起来,最终构成了一张庞大的知识图谱。这也解释了GraphRAG名称中“Graph”的由来。
既然我们知道了GraphRAG的核心在于绘制这张复杂的知识图谱,那么问题来了:有没有一种更直观的方式去感受这张图谱的存在与意义?答案是肯定的。例如通过Neo4j、Jupyter Notebook等工具实现知识图谱的可视化,但这些工具通常配置复杂、操作繁琐。
此时,GraphRAG Visualizer 成为更优雅的选择,它只需要简单的操作,就能将知识图谱直观地呈现出来,让复杂的关系网络变得清晰明了,一目了然!
什么是GraphRAG Visualizer?
官网:https://noworneverev.github.io/graphrag-visualizer
GraphRAG Visualizer 是一款基于网页,用于可视化 GraphRAG 产物的工具。通过上传由GraphRAG索引管道生成的Parquet文件,用户无需额外的脚本或软件(Gephi、Neo4j或Jupyter Notebook等)即可轻松查看和分析数据。
该工具支持2D和3D图形可视化、数据表显示以及搜索功能,所有数据处理均在本地运行,确保数据的安全和隐私。
-
**图形可视化:**在“图形可视化”选项卡中以 2D 或 3D 形式查看图形。
-
**数据表:**在“数据表”选项卡中显示来自Parquet文件中的数据。
-
**搜索功能:**支持搜索,允许用户专注于特定的节点或关系。
-
本地处理:所有工件均在本地计算机上处理,确保数据安全和隐私。
如何安装GraphRAG Visualizer?
Github:https://github.com/noworneverev/graphrag-visualizer
1. 克隆源码
git clone https://github.com/noworneverev/graphrag-visualizer.git
cd graphrag-visualizer
2. 安装依赖
npm install
3. 运行项目
npm start
4. 浏览器访问
http://localhost:3000
如何使用GraphRAG Visualizer?
1. 加载 Parquet 文件
将 GraphRAG 生成的Parquet文件放置在GraphRAG Visualizer项目的public/artifacts目录中,应用程序启动时会自动加载这些文件。
GraphRAG生成的Parquet文件位置:
GraphRAG Visualizer项目的public/artifacts目录:
2. 图形可视化界面
选项卡功能:
-
3D View:切换3D视角,更立体的方式探索数据节点和关系
-
Show Node Labels:显示节点的标签名称
-
Show Link Labels:显示连接线的标签
-
Show Highlight:启用高亮显示功能,更直观地聚焦于选中的节点或关系
-
Include Documents:显示与节点相关联的文档信息
-
Include Text Units:展示图谱中与文本单元相关的内容
-
Include Communities:包含社区信息,方便识别群组结构
-
Include Covariates:展示协变量信息,为节点关系提供更多背景数据
这些选项能够灵活定制图谱的显示方式,帮助我们更高效地探索和分析知识图谱。
3. 查看节点详情
点击某个节点,查看节点的详细信息及节点之间的关系:
可以看到原文本、实体标题、实体类型、实体描述、实体关系、关系权重…… 效果还是挺不错的,此刻GraphRAG的强大之处具象化了!
4. 搜索功能
通过搜索界面轻松查询和探索本地服务器上的数据:
5. 数据表功能
在数据表选项卡中查看和分析parquet文件中的数据:
综上
通过 GraphRAG Visualizer,我们能够便捷地操作和利用 GraphRAG 生成的数据,提高数据分析和决策的效率。
通过可视化,进一步感受到了 GraphRAG 在建立索引并生成知识图谱功能的强大!!!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。