如何让 DeepSeek 能够利用企业数据构建智能体应用?
DeepSeek 已经火遍全球,各种应用都非常惊艳。但在企业内部,DeepSeek 如何发挥作用?尤其是如何利用好企业内部海量且私有的数据?如何让业务用户都能享受 DeepSeek 等大模型带来的便利性,提升工作效率?
企业内部数据,尤其是经营管理类数据,敏感且安全性要求极高。但每个企业又非常需要通过大模型能力提升数据利用能力,赋能业务创新,提升效率。
以下是如何快速将企业内部数据结合 DeepSeek 以构建数据智能体的方式,用户可以轻松创建更多个性化智能体以解决不同的工作需求。
快速创建 AI 数据智能体
Kyligence AI 数据智能体可根据用户场景数据,化身为数据分析、市场策略、财务、HR 等不同领域的“专家”,支持 AI 问数、对话分析、归因分析、报告撰写等需求。例如,在零售行业,智能体可分析缺货数据,精准提供库存动态与营销建议,助力一线业务更高效决策。
目前,Kyligence 已支持 DeepSeek 私有化部署方案以及华为云等云平台部署方案,帮助用户快速构建 AI 数据智能体。完成部署后,用户即可基于 DeepSeek 构建集「智能问数」、「知识管理」和「决策建议」于一体的数据智能体。导入样例数据后,用户可以直观体验生成类与决策类应用的功能:
-
生成类:支持自然语言搜索业务指标,评估 KPI,生成分析报告,并自动计算指标。
-
决策类:内置自动归因分析、风险评估、协作工具集成等功能,助力组织智能决策。
精准、高效、安全的应用效果
从使用效果来看,用户通过更强的推理能力获得了更准确的回复,利用深度思考能力有效回答了业务用户的开放性问题,以及借助强大的内容生成能力提升了报告撰写效率。
- AI 问数、AI 对话分析:领导与业务人员等可通过自然语言问答方式,敏捷进行核心业务指标归因与洞察。
以 DeepSeek-V3 为例,也可以下拉选择其他供应商的 DeepSeek 服务
- AI 归因分析:10秒完成影响目标波动的关键因素,20秒找到数据变化背后的根本原因。
- AI 总结报告及下一步决策建议:自动生成业务分析报告,提炼关键洞察,并提供可执行的优化方向,助力高效决策。
智能体正逐步成为 AI 应用的主流形态,能力边界不断拓展,覆盖科研、代码编写、内容创作等领域,而数据分析则是企业落地 AI 战略的关键。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。