DeepSeek+企业内部数据,快速构建数据智能体

如何让 DeepSeek 能够利用企业数据构建智能体应用?

DeepSeek 已经火遍全球,各种应用都非常惊艳。但在企业内部,DeepSeek 如何发挥作用?尤其是如何利用好企业内部海量且私有的数据?如何让业务用户都能享受 DeepSeek 等大模型带来的便利性,提升工作效率?

企业内部数据,尤其是经营管理类数据,敏感且安全性要求极高。但每个企业又非常需要通过大模型能力提升数据利用能力,赋能业务创新,提升效率。

以下是如何快速将企业内部数据结合 DeepSeek 以构建数据智能体的方式,用户可以轻松创建更多个性化智能体以解决不同的工作需求。

快速创建 AI 数据智能体

Kyligence AI 数据智能体可根据用户场景数据,化身为数据分析、市场策略、财务、HR 等不同领域的“专家”,支持 AI 问数、对话分析、归因分析、报告撰写等需求。例如,在零售行业,智能体可分析缺货数据,精准提供库存动态与营销建议,助力一线业务更高效决策。

目前,Kyligence 已支持 DeepSeek 私有化部署方案以及华为云等云平台部署方案,帮助用户快速构建 AI 数据智能体。完成部署后,用户即可基于 DeepSeek 构建集「智能问数」、「知识管理」和「决策建议」于一体的数据智能体。导入样例数据后,用户可以直观体验生成类与决策类应用的功能:

  • 生成类:支持自然语言搜索业务指标,评估 KPI,生成分析报告,并自动计算指标。

  • 决策类:内置自动归因分析、风险评估、协作工具集成等功能,助力组织智能决策。

精准、高效、安全的应用效果

从使用效果来看,用户通过更强的推理能力获得了更准确的回复,利用深度思考能力有效回答了业务用户的开放性问题,以及借助强大的内容生成能力提升了报告撰写效率

  • AI 问数、AI 对话分析:领导与业务人员等可通过自然语言问答方式,敏捷进行核心业务指标归因与洞察。

以 DeepSeek-V3 为例,也可以下拉选择其他供应商的 DeepSeek 服务

  • AI 归因分析:10秒完成影响目标波动的关键因素,20秒找到数据变化背后的根本原因。

  • AI 总结报告及下一步决策建议:自动生成业务分析报告,提炼关键洞察,并提供可执行的优化方向,助力高效决策。

智能体正逐步成为 AI 应用的主流形态,能力边界不断拓展,覆盖科研、代码编写、内容创作等领域,而数据分析则是企业落地 AI 战略的关键。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 DeepSeek 和 RAG 技术实现智能客服 #### 构建基于 RAG 的智能客服架构 构建高效的企业级智能客服系统依赖于动态更新的知识库以及强大的自然语言处理能力。通过集成 DeepSeek 模型与 RAG(Retrieval-Augmented Generation)框架,可以实现实时获取最新的企业内部资料,并将其转化为有效的客户服务响应[^1]。 为了确保智能客服能及时回应用户的查询请求并给出精准的答案,在设计阶段需考虑以下几个方面: - **数据源接入**:利用 Amazon SageMaker 创建的连接器对接多种类型的数据存储服务,如数据库、文件系统等,以便从中抽取结构化或非结构化的文档作为知识库的一部分[^3]。 - **索引优化**:借助 Amazon OpenSearch Service 对导入的内容建立高效的全文搜索引擎,加速信息检索过程的同时提高匹配精度。 - **对话管理机制**:采用 Streamlit 开发 Web UI 接口用于展示交互界面,允许用户查看过往交流记录,同时支持多轮次问答逻辑控制,使得会话更加流畅自然[^2]。 #### 应用实例分析 在一个实际应用场景中,某大型金融机构希望通过引入先进的 AI 技术改进其在线咨询服务的质量。为此选择了融合了 DeepSeek 及 RAG 方法论的产品方案来进行改造升级。具措施如下: - 定期同步官方公告、产品手册等相关材料至云端仓库; - 配置好相应的 API 调用来触发模型推理操作,当收到新的咨询工单时即刻启动搜索任务寻找最接近的标准答案; - 将生成的回答反馈给前端页面显示出来供座席人员审核确认后再发送给最终求助者; 经过一段时间试运行之后发现不仅减少了人工干预次数还大幅缩短了解决周期平均耗时降低了约40%,客户满意度也有所上升。 ```python import boto3 from sagemaker import get_execution_role, session from deepseek.rag import RagPipeline def create_sagemaker_endpoint(model_name='deepseek-rag'): sm_client = boto3.client('sagemaker') role = get_execution_role() sess = session.Session() pipeline = RagPipeline( model=model_name, endpoint_instance_type="ml.m5.large", region_name=sess.region_name, role=role ) return pipeline.deploy() if __name__ == "__main__": rag_pipeline = create_sagemaker_endpoint() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值