当你自己在本地部署好DeepSeek后,要玩的更爽更舒服,更适合企业或者个人使用的话,当然是投喂数据了,把自己的数据文档整理好,全部投喂给DeepSeek后,他就可以立马成为你的私人AI助理,办公效率分分钟提高。
先说一下,啥叫“投喂数据”,打个比方,想象你有一个非常聪明的学生,但他一开始什么书都没读过,脑子里一片空白。为了让这个学生变得博学,你需要给他提供大量的书籍(数据)。这些书籍可以是小说、历史、科学、数学等各种类型。你每天给他一本书,他读完后就吸收了书中的知识,逐渐变得聪明起来。
“投喂数据”就像是给这个学生提供书籍的过程。你不断给他新的书(数据),他通过阅读和学习(训练)变得越来越有智慧(模型性能提升)。最终,这个学生能够回答各种问题、解决复杂任务,甚至写出自己的文章。
所以,“对大模型投喂数据”就是通过不断提供大量数据,让模型从中学习,变得越来越智能的过程。
步骤1 下载并且安装 AnythingLLM
到官网:https://anythingllm.com/desktop 下载安装就行。支持MacOS以及Windows。
步骤2 配置自己的工作空间
工作空间随便创建一个,可以创建多个:
创建完毕后,建议设置一下语言环境,当然选择“中文”就行:
步骤3 配置ollama和deepseek大模型
如何安装ollama以及本地部署deepseek,请看我前几期的文章或视频。在自己的工作区设置中,选择ollama以及deepseek-r1推理大模型,如下:
然后设置AnythingLLM的嵌入引擎首选项,也同样是ollama和deepseek,如下:
步骤4 喂数据
数据可以多样化,比如某个角色,比如自己所在行业的文档,又比如各个季度年度的财务报表,公司的所有规范规则文档等等,都可以用同样的方式“喂”给deepseek。
点击上传按钮:
把自己的文档数据上传后,在有选择的提交给自己的工作空间,也就是下图的右边部分是真正AI需要使用的,选择好后点击保存按钮即可。
步骤5 和AI女友聊天
最后,所有准备工作都已经可以了,和你的AI女朋友聊天吧,话题可以深可以浅,尺度自己把握噢~~!!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。