《全国智慧农业行动计划(2024—2028年)》提出“探索推广“伏羲农场”等未来应用场景”并支持中国科学院持续探索总结“伏羲农场”模式。
“伏羲农场”的建设目标
“伏羲农场”技术集成创新体系将探索我国传统的农业生产智慧与现代科技创新深度融合的模式。
“伏羲农场”以智能技术为主要手段,通过农业生产全过程的数据采集,并利用人工智能算法和模型在信息空间建立农业生产的“孪生系统”,将农业生产全过程搬到信息空间进行自主学习和训练,以数据分析为依托,实现农业生产全过程的智能化决策。再结合第3代智能农机装备实现精准变量的作业执行,最终实现智能、绿色、节本、增产、提质、增效的六大目标,从而解决未来“谁来种地、怎么种好地”的问题。
“伏羲农场”构建的主要内容
通过“伏羲农场”构建,突破我国智慧农业自主可控全链条技术、数据、算法模型的核心壁垒。
农业管理的低效性体现在时间的滞后性和空间的不均一性,从而导致水肥药管理的效果差、农资劳工消耗大。以“OODA”(感知:Observe;分析:Orient;决策:Decide;执行:Act)为指导原则的闭环管理策略,可以在农作物生长过程中及时发现农田管理的需求,并在空间上精准控制作业范围,从而提高农作物动态管理的效率和智能化水平。
为此,“伏羲农场”首先要通过农业传感技术,实时动态、高通量、多维度、精准采集涉及农业生产全过程的“水、土、气、生”信息,建立数据底座;然后,构建支撑“伏羲农场”运行的算力中心,实现对农业生产数据的实时快速处理;依托“伏羲农场”数据底座,构建并集成多种农业算法模型,自主生成包含种植前、种植中、种植后全过程的作业决策处方图,并通过通信网络将决策指令下发到“伏羲农场”生产现场;随后,依托第3代智能农机技术体系,应用无人化新能源智能农机装备,集成无人驾驶、路径规划、自动避障、作业质量监控等功能,完成精准变量作业。最终实现“农业九步法”(精准整地、精量播种、变量施肥、变量施药、变量施水、收获减损、运输减损、仓储减损、秸秆综合利用)的智能化落地,全面打造高质量的农业现代化生产模式。
“伏羲农场”智慧农业体系致力于打造我国农业新质生产力。要规划3—5年后,如何让年轻人愿意积极从事农业生产,并培训年轻人的技能,向“5个人管理5万亩”“一个平台管理5亿亩”“不下地也能种好地”的目标迈进。尤其是引入AI、高端农机、生物技术等新技术,构成了新的劳动资料,为新型职业农人进入农业生产提供帮助。
“伏羲农场”智慧农业体系需要创建新型生产关系。通过联合政府资金平台、工程技术实验室、地方主管部门、农村合作社、个人的多要素投资合作,约定新型运营模式;通过科学技术赋能产业升级、产业效益共享的机制,建立新型农业生产关系,实现乡村振兴目标。
“伏羲农场”的基础建设要求
通过建立“伏羲农场”农业基础设施标准,打造全流程可控的实体基地,系统应对农业生产中的不确定性。针对不同地区农业生产特征,既需要结合西方高效的中小型农场模式和我国现有农垦生产连队模式的优势,也需要根据我国农业生产力和生产关系的特征,对农业产业模式和生产方式进行多维度有序升级。因此,在“伏羲农场”构建中,理想的基础建设要求为:在万亩级连片耕地周围建立“三室两厅、三库一塔”的基础功能模块,即“测土实验室、育种实验室、农机实验室、科技厅、指挥中心厅,农机库、农资库、粮库、烘干塔”,形成适应不同地域的“良种测试筛选—土壤信息监测—装备统一调度—数据迅速融合—决策即时执行”一体化的智慧农业单一节点。
“伏羲农场”的应用实践
近几年,中国科学院研究团队与呼伦贝尔农垦集团以“伏羲农场”的思路和理念,开展了一系列农业科技创新增加与实践验证合作。目前,利用第3代智能农业机械,在黑土地农业生产中开展无人化作业的面积累计达到1.82万亩,实现了少人化作业和降本节能。
针对玉米、大豆主产区,研发了基于人工智能大模型的“伏羲大脑”农业智能决策系统,实现了22个环节的种植辅助决策的生成,初步形成“数字决策+智能农机”场景的构建。根据智能模型决策方案,在200亩示范田中,利用基于AI的水肥一体滴灌技术,比农场原有雨养管理模式下增产24%左右,相比于农场的喷灌管理模式,在节水36.7%的情况下增产2.2%。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。