LangGraph 平台正式发布:赋能AI开发!

近日,LangChain 宣布 LangGraph 平台 正式上线,这是一个专为部署和管理长期运行、有状态的 AI Agent 打造的强大工具。平台提供 一键部署30+ API 端点水平扩展持久化层Agent IDE,极大简化了 Agent 的开发、部署和管理流程。同时,它针对 Agent 运行中的核心挑战(如长期运行、异步协作和流量突发)提供了全面解决方案,并支持 云端、混合和自托管 多种部署选项。以下聊聊 LangGraph 平台的亮点、使用方式及其对 AI 开发的潜在影响!

img

核心亮点:从开发到部署,全链路赋能

根据 LangChain 官网和官方博客(2024年10月31日),LangGraph 平台基于开源的 LangGraph 框架,结合生产级需求,打造出一站式 Agent 部署和管理服务。核心功能包括:

  • 一键部署

    通过 GitHub 仓库集成,最快几分钟完成从代码到生产环境的部署,省去繁琐的配置。支持快速迭代,适合初创团队和企业。

  • 30+ API 端点

    提供丰富的 API 接口,包括状态管理、流式输出、人类干预(human-in-the-loop)、任务触发等,满足多样化的 Agent 交互需求。

  • 水平扩展

    内置任务队列和可横向扩展的服务器,轻松应对流量突发和高并发场景,保障服务稳定性。

  • 持久化层

    通过优化检查点(checkpointer)和内存管理,支持 Agent 的短期和长期记忆,跨会话保持状态,确保连续性和个性化体验。

  • Agent IDE(LangGraph Studio)

    全球首款 Agent 专用 IDE,提供可视化调试、状态跟踪和代码修改功能,支持实时交互和“时间旅行”(回溯状态)。目前支持 Apple Silicon,未来将扩展到更多平台。

  • 多种部署选项

    • 云端 SaaS

      托管于 LangSmith,零维护,自动更新,适合快速上线。

    • 混合部署

      SaaS 控制平面 + 自托管数据平面,数据不离 VPC,兼顾便利性和安全性。

    • 完全自托管

      Lite 版免费(每月100万节点),企业版提供高级功能,适合对数据控制要求高的团队。

    • BYOC(自带云)

      企业专属,支持 AWS,数据和控制平面完全自管。

  • Agent 注册中心与版本控制

    支持 Agent 配置模板化,团队可复用、分享和版本化 Agent 架构,提升协作效率。

  • 多 Agent 架构

    支持单 Agent、多 Agent、层次化或顺序化控制流,适配复杂场景,如客服系统或自动化工作流。

平台还集成了 LangSmith,提供详细的运行日志、性能监控和调试工具,确保 Agent 在生产环境中的可靠性。博客中提到,Klarna、Elastic 等企业已采用 LangGraph,验证了其在客服、搜索等场景的实用性。

解决 Agent 开发的痛点

LangGraph 平台针对 AI Agent 运行中的三大挑战提供了解决方案:

  1. 长期运行与状态管理

    传统 Web 基础设施擅长短任务,但 Agent 常需运行数小时甚至数天。LangGraph 平台通过持久化层和后台任务支持(如轮询和 Webhook),确保 Agent 可中断后恢复,适合研究型或多步骤任务。

  2. 异步协作与人类干预

    平台支持人类实时介入(human-in-the-loop),可检查、编辑或回滚 Agent 状态。比如,Elastic 团队利用此功能,让 Agent 草稿待审后执行,保障精准性。还支持“双发消息”处理,防止用户快速输入导致的状态混乱。

  3. 流量突发与扩展

    通过横向扩展的任务队列和服务器,平台能优雅应对高并发请求,适合客服、电商等高流量场景。

这些特性让 LangGraph 平台从原型开发到生产部署都游刃有余,尤其适合需要复杂逻辑和状态管理的 Agent 应用。

值得一试吗?

LangGraph 平台以其强大的基础设施、灵活的部署选项和创新的 Agent IDE,为 AI Agent 开发注入新活力。无论是想快速原型化的开发者,还是需要生产级 Agent 的大型企业,都能从中受益。尤其对客服、教育、研究等需要长期运行和状态管理的场景,这平台堪称“开箱即用”。但对预算有限的团队,免费 Lite 版的 100万节点限制可能稍显严格,需权衡需求。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值