LangChain基于RAG实现文档问答

1 RAG(Retrieval-augmented Generation)是什么?

大语言模型所实现的最强大应用之一是复杂的问答(Q&A)聊天机器人。这些应用能够回答关于特定源信息的问题。这些应用使用一种称为检索增强生成(RAG)的技术。

RAG是一种用额外数据增强大语言模型知识的技术。

大语言模型可以对广泛的主题进行推理,但它们的知识仅限于训练时截止日期前的公开数据。如果你想构建能够对私有数据或模型截止日期后引入的数据进行推理的人工智能应用,你需要用特定信息来增强模型的知识。检索适当信息并将其插入模型提示的过程被称为检索增强生成(RAG)。

LangChain有许多组件旨在帮助构建问答应用,以及更广泛的RAG应用。

img

2 RAG工作流

一个典型的RAG应用有两个主要组成部分:

索引(Indexing):从数据源获取数据并建立索引的管道(pipeline)。这通常在离线状态下进行。

检索和生成(Retrieval and generation):实际的RAG链,在运行时接收用户查询,从索引中检索相关数据,然后将其传递给模型。

从原始数据到答案的最常见完整顺序如下:

2.1 索引(Indexing)

  1. 加载(Load):首先我们需要加载数据。这是通过文档加载器Document Loaders完成的。
  2. 分割(Split):文本分割器Text splitters将大型文档(Documents)分成更小的块(chunks)。这对于索引数据和将其传递给模型都很有用,因为大块数据更难搜索,而且不适合模型有限的上下文窗口。
  3. 存储(Store):我们需要一个地方来存储和索引我们的分割(splits),以便后续可以对其进行搜索。这通常使用向量存储VectorStore和嵌入模型Embeddings model来完成。

img

2.2 检索和生成(Retrieval and generation)

  1. 检索(Retrieve):给定用户输入,使用检索器Retriever从存储中检索相关的文本片段。
  2. 生成(Generate): ChatModel使用包含问题和检索到的数据的提示来生成答案。

img

3 文档问答

3.1 实现流程

一个 RAG 程序的 APP 主要有以下流程:

  1. 用户在 RAG 客户端上传一个txt文件
  2. 服务器端接收客户端文件,存储在服务端
  3. 服务器端程序对文件进行读取
  4. 对文件内容进行拆分,防止一次性塞给 Embedding 模型超 token 限制
  5. 把 Embedding 后的内容存储在向量数据库,生成检索器
  6. 程序准备就绪,允许用户进行提问
  7. 用户提出问题,大模型调用检索器检索文档,把相关片段找出来后,组织后,回复用户。

img

4 代码实现

使用 Streamlit 实现文件上传,我这里只实现了 txt 文件上传,其实这里可以在 type 参数里面设置多个文件类型,在后面的检索器方法里面针对每个类型进行处理即可。

4.1 实现文件上传
importstreamlitasst

# 上传txt文件,允许上传多个文件
uploaded_files = st.sidebar.file_uploader(
    label="上传txt文件", type=["txt"], accept_multiple_files=True
)
ifnotuploaded_files:
    st.info("请先上传按TXT文档。")
    st.stop()
4.2 实现检索器

注意 chunk_size 最大设置数值取决于 Embedding 模型允许单词的最大字符数限制。

importtempfile
importos
fromlangchain.document_loadersimportTextLoader
fromlangchain_community.embeddingsimportQianfanEmbeddingsEndpoint
fromlangchain_chromaimportChroma
fromlangchain_text_splittersimportRecursiveCharacterTextSplitter

# 实现检索器
@st.cache_resource(ttl="1h")
defconfigure_retriever(uploaded_files):
    # 读取上传的文档,并写入一个临时目录
    docs = []
    temp_dir = tempfile.TemporaryDirectory(dir=r"D:\\")
    forfileinuploaded_files:
        temp_filepath = os.path.join(temp_dir.name, file.name)
        withopen(temp_filepath, "wb") asf:
            f.write(file.getvalue())
        loader = TextLoader(temp_filepath, encoding="utf-8")
        docs.extend(loader.load())

    # 进行文档分割
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=30)
    splits = text_splitter.split_documents(docs)

    # 这里使用了OpenAI向量模型
    embeddings = OpenAIEmbeddings()
    vectordb = Chroma.from_documents(splits, embeddings)

    retriever = vectordb.as_retriever()

    returnretriever


retriever = configure_retriever(uploaded_files)
4.3 创建检索工具

langchain 提供了 create_retriever_tool 工具,可以直接用。

# 创建检索工具
fromlangchain.tools.retrieverimportcreate_retriever_tool

tool = create_retriever_tool(
    retriever,
    "文档检索",
    "用于检索用户提出的问题,并基于检索到的文档内容进行回复.",
)
tools = [tool]
4.4 创建 React Agent
instructions = """您是一个设计用于查询文档来回答问题的代理。
您可以使用文档检索工具,并基于检索内容来回答问题
您可能不查询文档就知道答案,但是您仍然应该查询文档来获得答案。
如果您从文档中找不到任何信息用于回答问题,则只需返回“抱歉,这个问题我还不知道。”作为答案。
"""

base_prompt_template = """
{instructions}

TOOLS:
------

You have access to the following tools:

{tools}

To use a tool, please use the following format:

•```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
•```

When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:

•```
Thought: Do I need to use a tool? No
Final Answer: [your response here]
•```

Begin!

Previous conversation history:
{chat_history}

New input: {input}
{agent_scratchpad}"""

base_prompt = PromptTemplate.from_template(base_prompt_template)

prompt = base_prompt.partial(instructions=instructions)

# 创建llm
llm = ChatOpenAI()

# 创建react Agent
agent = create_react_agent(llm, tools, prompt)

agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory, verbose=False)
4.5 实现 Agent 回复

获取用户输入,并回复用户,这里使用 StreamlitCallbackHandler 实现了 React 推理回调,可以让模型的推理过程可见。

# 创建聊天输入框
user_query = st.chat_input(placeholder="请开始提问吧!")

ifuser_query:
    st.session_state.messages.append({"role": "user", "content": user_query})
    st.chat_message("user").write(user_query)

    withst.chat_message("assistant"):
        st_cb = StreamlitCallbackHandler(st.container())
        config = {"callbacks": [st_cb]}
        response = agent_executor.invoke({"input": user_query}, config=config)
        st.session_state.messages.append({"role": "assistant", "content": response["output"]})
        st.write(response["output"])
4.6 实现效果

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何使用 LangChain 实现检索增强生成(RAG) 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了检索模型和生成模型的技术,旨在通过从外部数据源中提取相关信息来提高生成质量。以下是基于 LangChainRAG 实现方法。 #### 使用 LangChain 构建 RAG 流程 LangChain 提供了一套工具链用于构建复杂的自然语言处理应用,其中包括 RAG实现。以下是一个完整的流程说明: 1. **定义文档格式化函数** 需要创建一个函数 `format_docs` 将检索到的文档转换为适合输入给大语言模型的形式。此过程通常涉及拼接多个文档的内容并保留其结构[^3]。 2. **设置检索器** 利用 LangChain 中的检索组件(如 VectorStoreRetriever),可以从存储的知识库中获取与查询最相关的上下文信息。这些信息作为额外的背景提供给后续的语言模型。 3. **组合运行流** 创建一个可执行的工作流对象 `rag_chain`,它串联了以下几个阶段: - 输入问题; - 调用检索器获得相关文档; - 对文档进行格式化; - 结合提示模板将问题和上下文传递至大型语言模型(LLM); - 解析 LLM 输出的结果。 下面展示了一个具体的代码实例: ```python from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough def format_docs(docs): """将检索到的文档列表转化为字符串形式""" return "\n\n".join(doc.page_content for doc in docs) # 定义工作流 rag_chain = ( { "context": retriever | format_docs, "question": RunnablePassthrough() } | prompt | llm | StrOutputParser() ) # 执行实时推理 for chunk in rag_chain.stream("What is Task Decomposition?"): print(chunk, end="", flush=True) ``` 上述脚本展示了如何逐步调用各个模块完成端到端的任务分解问答功能。 --- #### 关键概念解释 - **retriever**: 这里指代的是一个能够依据用户提问返回关联度较高的文档片段的对象。 - **prompt**: 表达清晰逻辑关系的引导语句设计模式,指导 AI 正确理解任务需求。 - **llm**: 大型预训练语言模型负责最终答案生成环节。 以上各要素共同协作构成了高效的 RAG 系统架构。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值