时间序列预测机器学习算法整合(TCN、LSTM、GRU、Transformer等),包含详细的分析与源码

1.摘要

  • 在大数据与人工智能领域,时间序列预测是至关重要的研究方向之一。它涉及从历史数据中捕捉模式并预测未来的趋势,广泛应用于金融分析、天气预报、疾病传播预测、电力需求管理等领域。

  • 时间序列预测的核心在于建立能够理解数据随时间变化规律的模型,这些模型需要能够处理序列中的依赖关系,从而做出准确的预测。本文的主要目的是通过一些具体事例,深入嵌入的讲解基于机器学习算法的时间序列预测任务,主要适用于多输入单输出(MISO)和多输入多输出(MIMO)任务。

  • 本文涉及到的算法主要分为四类网络结构,分别为循环递归结构、卷积神经网络结构、Transformer结构以及混合结构(也就是我们经常说到的魔改神经网络),并通过一个具体事例,根据数据、代码和结果来一步步的去对算法进行分析。
    在这里插入图片描述

2. 任务

在造船领域,对二手船的价格预测是一个较为重要的任务。其价格受到多重因素的影响,本文共列举了其中的11种因素:62%品位铁矿石期货价格、铜期货价格、锡期货价格、大豆期货价格、小麦期货价格、玉米期货价格、木材期货价格、WTI原油期货价格、美元指数、汇率Yuan/$、标准普尔500指数等,数据集如下图表格所示,共2011年一直收集到2023年,每隔一周收集一次数据:
在这里插入图片描述
本文的任务是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值