大模型微调:SFT(Supervised Fine-Tuning)主要方式、SFT-训练参数如何调整

微调作为一种技术手段,是在已具备广泛知识基础的大型预训练语言模型上,利用针对性的数据集实施额外的训练过程,旨在使模型更精准地契合特定任务需求或深入某一专业领域。微调的核心目标在于实现知识的精细化灌输与指令系统的精确匹配。

在这里插入图片描述

大模型的SFT(Supervised Fine-Tuning)方式主要包括以下几种:

1.全参数微调(Full Parameter Fine Tuning)

全参数微调涉及对模型的所有权重进行调整,以使其完全适应特定领域或任务。这种方法适用于拥有大量与任务高度相关的高质量训练数据的情况,通过更新所有参数来最大程度地优化模型对新任务的理解和表现。

2.部分参数微调(Sparse Fine Tuning / Selective Fine Tuning)

部分参数微调策略仅选择性地更新模型中的某些权重,尤其是在需要保留大部分预训练知识的情况下。这包括:

a.LoRA(Low-Rank Adaptation):通过向模型权重矩阵添加低秩矩阵来进行微调,既允许模型学习新的任务特定模式,又能够保留大部分预训练知识,从而降低过拟合风险并提高训练效率。

b.P-tuning v2:这是一种基于prompt tuning的方法,仅微调模型中与prompt相关的部分参数(例如,额外添加的可学习prompt嵌入),而不是直接修改模型主体的权重。

c.QLoRA:可能是指Quantized Low-Rank Adaptation或其他类似技术,它可能结合了低秩调整与量化技术,以实现高效且资源友好的微调。

3.冻结(Freeze)监督微调

在这种微调方式中,部分或全部预训练模型的权重被冻结(即保持不变不再训练),仅对模型的部分层(如最后一层或某些中间层)或新增的附加组件(如任务特定的输出层或注意力机制)进行训练。这样可以防止预训练知识被过度覆盖,同时允许模型学习针对新任务的特定决策边界。如果在资源充足的情况下,建议使用SFT进行全量微调。部分参数微调的方法不稳定,在有的场景下效果不理想。
在这里插入图片描述

在进行领域任务的SFT的时候我们通常会有以下训练模式进行选择,根据领域任务、领域样本情况、业务的需求我们可以选择合适的训练模式。

  • 模式一:基于base模型+领域任务的SFT;
  • 模式二:基于base模型+领域数据 continue pre-train +领域任务SFT;
  • 模式三:基于base模型+领域数据 continue pre-train +通用任务SFT+领域任务SFT;
  • 模式四:基于base模型+领域数据 continue pre-train +通用任务与领域任务混合SFT;
  • 模式五:基于base模型+领域数据 continue pre-train(混入SFT数据) +通用任务与领域任务混合SFT;
  • 模式六:基于chat模型+领域任务SFT;
  • 模式六:基于chat模型+领域数据 continue pre-train +领域任务SFT

1、是否需要continue pre-train 大模型的知识来自于pre-train阶段,如果你的领域任务数据集与pre-train的数据集差异较大,比如你的领域任务数据来自公司内部,pre-train训练样本基本不可能覆盖到,那一定要进行continue pre-train。如果你的领域任务数据量较大(token在1B以上),并只追求领域任务的效果,不考虑通用能力,建议进行continue pre-train。

2、关于chat模型和base模型如何选择问题?如果你有一个好的base模型,在base模型基础进行领域数据的SFT与在chat模型上进行SFT,效果上差异不大。基于chat模型进行领域SFT,会很容导致灾难性遗忘,在进行领域任务SFT之后,模型通用能力会降低,如只追求领域任务的效果,则不用考虑。如果你的领域任务与通用任务有很大的相关性,那这种二阶段SFT会提升你的领域任务的效果。如果你既追求领域任务的效果,并且希望通用能力不下降,建议选择base模型作为基座模型。在base模型上进行多任务混合训练,混合训练的时候需要关注各任务间的数据配比。

3、其他

  • 在资源运行的情况下,如只考虑领域任务效果,我会选择模式二;
  • 在资源运行的情况下,如考虑模型综合能力,我会选择模式五;
  • 在资源不允许的情况下,我会考虑模式六;

SFT-训练参数如何调整

  • 学习率 学习率是一个非常重要的参数 ,如果学习率设置不当,很容易让你的SFT模型烂掉。SFT数据集不是特别大的情况下,建议设置较小学习率,一般设置为pre-train阶段学习率的0.1左右,如在pre-train阶段的学习率为9e-5,则SFT学习率设置为9e-6。在10万SFT样本上,采用与pre-train一样的学习率,发现loss一直不收敛,在调低学习率至原来0.1之后,loss在两个epoch之后就收敛。

  • warmup_ratio 通常pre-train训练的warmup_ratio 0.01~0.015之间,warmup-steps在2000左右。在SFT的时候,建议使用更小的ratio,因为相较于pre-train,SFT样本非常小,较小warmup_ratio可以使模型收敛更平滑。但如果你的学习率设置较大,那可以增大你的warmup_ratio,两者呈正相关。

  • Epoch Epoch设置可以根据loss收敛情况设置,如果SFT样本较少,可以设置较大epoch,在较小的epoch上loss会不收敛,指令都很难遵循。较大epoch会容易导致过拟合,但过拟合要优于欠拟合。如果SFT样本数量较多,如在十万以上,一般2个epoch即可收敛。

可以用来使用 SFT 训练 LLM transformer 强化学习 (TRL) Python 库,其中包含 SFT 的实现,可用于微调现有语言模型只需几行代码。

在这里插入图片描述

如果SFT任务类型较多,可以尝试添加system_prompt,不同的任务使用不同的system_prompt;一个好的基座模型非常重要!在SFT的时候,loss依然是你最重要的指标!

一般在SFT过程中,loss会先升后降;可以尝试多种模式训练方案,如在continue pre-train 中添加SFT数据,在SFT数据添加高质量的pre-train数据。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值