RAG 架构图解:从基础到高级(三)Agentic RAG Router、Agentic RAG Multi-Agent

六、Agentic RAG Router

Agentic RAG Router 使用 AI Agent 来路由和处理查询,可以选择最适合的处理路径

Agentic RAG Router 是一种更高级的 Retrieval-Augmented Generation (RAG) 架构,通过引入AI Agent 作为路由器,根据用户的查询动态选择最合适的处理路径或模块。它在复杂、多任务场景中具有明显优势,因为不同查询可能需要不同的数据源或处理逻辑。


Agentic RAG Router 架构

Agentic RAG 的核心是一个智能路由器(Agent),负责理解用户查询并决定如何处理。整个系统通常由以下模块组成:

  1. AI Router (Agent)
  • 使用大型语言模型(如 GPT 或其他 LLM)作为路由器,分析查询的意图和类型。
  • 基于查询选择最合适的检索模块和生成模块。
  • 可以动态配置执行逻辑,比如调用特定知识库或外部 API。
  1. 多检索模块
  • 文本检索:文档、FAQ。
  • 图像检索:视觉数据库。
  • 图数据库:复杂关系推理。
  • 不同的检索模块可以处理不同的数据源或模态:
  • Router 决定调用哪种检索模块或多模块组合。
  1. 多生成模块
  • 自然语言生成(文本)。
  • 图像生成或描述(视觉)。
  • 表格生成或数据分析(结构化数据)。
  • 针对不同任务优化的生成模块
  1. 执行路径
  • 直接回答(无需检索)。
  • 检索后回答(RAG 流程)。
  • 调用外部工具或 API(如计算器或代码执行器)。
  • Router 分析用户查询

工作流程

  1. 用户查询
  • “这张图片中的内容是什么?”
  • “帮我从文档中找出关于技术趋势的摘要。”
  • 用户输入问题或任务描述
  1. 路由决策
  • 任务分类:问答、生成、推理等。
  • 数据模态识别:文本、图像、表格等。
  • 优化目标:速度优先或准确性优先。
  • Router 分析查询的意图和模态
  1. 模块选择
  • 文本问答:调用文本检索模块 + GPT 生成模块。
  • 图像问答:调用图像嵌入模型(如 CLIP) + 图像描述生成模块。
  • 多模态组合:同时调用文本和图像检索模块,结合生成。
  • 根据分析结果,Router 调用最适合的检索模块和生成模块。
  1. 内容生成
  • 通过生成模块输出结果,可能是单一模态的回答,也可能是多模态结合的内容。

Agentic RAG 的优势

  1. 动态任务适配
  • Router 能根据不同任务动态调整执行路径,无需固定流程,适合复杂场景。
  1. 多模态支持
  • 通过灵活调用不同模态的模块(文本、图像、视频等),支持更广泛的应用场景。
  1. 智能资源管理
  • 仅在需要时调用复杂模块,优化资源利用效率(如避免在简单问题上使用冗余计算)。
  1. 增强用户体验
  • 通过选择最适合的路径,提供高质量、个性化的回答。

应用场景

  1. 多任务问答系统
  • 支持用户提出多模态、多领域问题,并动态调整处理逻辑。
  1. 企业知识管理
  • 在大规模知识库中,针对不同问题选择最相关的数据源和处理方法。
  1. 医疗辅助
  • 动态调用医学图像分析模块、文献检索模块或诊断生成模块。
  1. 教育与内容生成
  • 根据学生的问题选择合适的资料来源并生成解释。
  1. 自动化工作流
  • 处理复杂查询时,调用外部工具(如计算器、翻译器、编程执行器)完成多步骤任务。

技术实现示例

  1. Router
  • 使用大型语言模型(如 OpenAI GPT 系列、Claude、LLaMA)微调,理解用户意图。
  1. 检索模块
  • 文本:FAISS、ElasticSearch。
  • 图像:CLIP、DINO。
  • 图数据库:Neo4j。
  1. 生成模块
  • 文本生成:T5、BART、GPT。
  • 图像生成:DALLE-2、Stable Diffusion。
  • 数据生成:Pandas、NumPy。
  1. 执行引擎
  • 调用工具链(如 LangChain)动态组织不同模块的调用。

Agentic RAG Router 的灵活性使其成为解决复杂问题的强大工具。通过将智能路由与强大的检索和生成能力相结合,它可以显著提升处理多模态、多任务场景的效率和准确性。

七、Agentic RAG Multi-Agent

Agentic RAG Multi-Agent 使用多个专门的 AI Agent 协同工作,可以调用不同的工具(如向量搜索、网页搜索、Slack、Gmail 等)

Agentic RAG Multi-Agent 是 Retrieval-Augmented Generation (RAG) 的进一步进化版本,它引入多个专门的 AI Agent,每个 Agent 负责不同的任务或工具调用。通过这些 Agent 的协同工作,系统能够在复杂、多源数据环境中灵活高效地处理任务,比如同时检索向量数据库、执行网页搜索、查询第三方 API,甚至与工具(如 Slack、Gmail)交互。


Agentic RAG Multi-Agent 架构

Agentic RAG Multi-Agent 的核心特性是多个专用 Agent 的协作,每个 Agent 可以完成特定任务或调用特定工具。整个系统由以下组件组成:

  1. Central Orchestrator (主控 Agent)
  • 作为中央调度器,负责解析用户意图、分派任务,并整合多个 Agent 的输出。
  • 主控 Agent 可以使用 LLM(如 GPT-4)来执行复杂的任务规划和路由。
  1. 专用 AI Agent
  • 向量搜索 Agent:从向量数据库中检索相关内容。
  • 网页搜索 Agent:实时从互联网获取最新信息。
  • 通信工具 Agent:与 Slack、Gmail 等进行交互。
  • 数据处理 Agent:处理结构化数据(如表格或数据库查询)。
  • 模态特定 Agent:如图像分析、语音识别等。
  • 每个 Agent 负责特定类型的任务或工具
  1. 工具与数据接口
  • 每个 Agent 可调用专用工具或 API,比如向量检索工具(FAISS)、Web 搜索引擎(如 Google API)、生产力工具(Slack、Notion)。
  1. 输出整合模块
  • 主控 Agent 收集和整合来自各 Agent 的结果,将最终答案以自然语言或多模态形式输出给用户。

工作流程

  1. 用户输入
  • “帮我分析这份文件的摘要,并用邮件发送给团队。”
  • “找出过去一周相关的行业趋势,并通知 Slack 频道。”
  • 用户提出一个复杂的请求
  1. 任务分解
  • 提取摘要:调用向量检索 Agent 或文本处理工具。
  • 搜索趋势:调用网页搜索 Agent。
  • 发送通知:调用 Slack 或 Gmail Agent。
  • 主控 Agent 将任务分解为子任务
  1. 任务分配
  • 主控 Agent 将子任务分派给相关专用 Agent,按优先级并行处理。
  1. 执行任务
  • 专用 Agent 调用相应工具或接口完成任务,返回结果。
  1. 整合与反馈
  • 主控 Agent 收集所有 Agent 的结果,整合为用户可以理解的最终输出。

Agentic RAG Multi-Agent 的优势

  1. 模块化设计
  • 各 Agent 独立工作,便于扩展和优化。例如,可新增图像处理 Agent 或语音处理 Agent。
  1. 多任务并行处理
  • 多个 Agent 可并行运行,大幅提高复杂任务的处理效率。
  1. 工具支持广泛
  • 能调用多种工具和 API,覆盖从数据检索到内容生成、任务执行等全流程。
  1. 动态任务适配
  • 主控 Agent 可根据任务动态调整执行路径和 Agent 调用顺序。
  1. 复杂任务自动化
  • 能自动化执行跨工具、跨数据源的多步骤任务,例如从检索数据到生成报告并发送通知。

应用场景

  1. 企业知识管理
  • 检索企业文档、结合网页搜索实时更新信息,并将结果发送至团队协作工具(如 Slack)。
  1. 内容创作与分发
  • 从向量数据库中检索素材,生成文章或报告,并分发至邮箱或内容管理系统。
  1. 多模态问答
  • 同时调用文本、图像和视频分析 Agent,生成多模态回答。
  1. 实时数据分析
  • 从网页和内部数据库中收集实时数据,生成趋势分析报告。
  1. 个人助理
  • 处理日常任务,如查看邮件、管理日程、设置提醒等。
  1. 复杂客户支持
  • 检索 FAQ、结合网页搜索和实时工具调用,为用户提供高质量的支持。

示例技术栈

  1. 主控 Agent
  • 使用 GPT 系列或其他大型语言模型。
  1. 专用 Agent
  • 向量检索:FAISS、Weaviate。
  • 网页搜索:Google API、Bing Search API。
  • 通信工具:Slack API、Gmail API。
  • 数据分析:Pandas、NumPy。
  1. 协作框架
  • LangChain:支持 Agent 编排。
  • Tools SDK:实现与外部工具的接口。

示例场景:行业趋势通知

用户输入: “帮我从数据库和互联网找出过去一周的行业趋势,并用摘要发邮件给团队。”

系统执行

  1. 主控 Agent 分解任务:
  • 检索数据库:调用向量搜索 Agent。
  • 搜索互联网:调用网页搜索 Agent。
  • 生成摘要:调用文本生成 Agent。
  • 发送邮件:调用 Gmail Agent。
  1. 各 Agent 独立工作并返回结果:
  • 向量搜索 Agent:检索内部数据库的行业报告。
  • 网页搜索 Agent:爬取过去一周的行业新闻。
  • 文本生成 Agent:将数据整合为摘要。
  • Gmail Agent:将摘要发送给团队。
  1. 主控 Agent 整合结果并完成任务。

通过 Agentic RAG Multi-Agent,复杂任务可以自动化完成,显著提升效率和用户体验,尤其在需要跨模态、跨工具协作的场景中表现尤为出色。

最后:如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值