扣子(Coze) | 什么是工作流? 扣子怎么搭建工作流?

一、扣子(Coze)工作流介绍

1、什么是工作流?

在扣子(Coze)平台中,工作流是一种将多个任务、操作或工具按照特定的顺序和逻辑进行组合编排的流程。它可以自动化地处理复杂的业务场景,使得不同的插件、模型等元素能够协同工作,以实现更高效、准确的功能输出。

在这里插入图片描述

以下是一个简单的工作流:

在这里插入图片描述

通俗来讲,工作流就是为了完成预设目标所拆解的一系列步骤所组合在一起的流程。

2、为什么有了提示词已经能够让大模型按照一定流程完成输出的情况下,还需要有工作流?

事实上,提示词(Prompt)和工作流(Workflow)在AI应用中是互补关系而非替代关系,其核心差异在于**「系统化能力」**的构建。以下是需要工作流的六个关键原因:

1. 处理复杂任务的拓扑结构

「提示词的局限」

  • 单次交互更适合线性问答,而真实业务常涉及多节点决策树(如客户投诉处理需触发工单生成→责任判定→补偿方案→满意度回访)

「工作流的价值」

  • 将业务逻辑转化为可编排的流程图

  • 支持条件分支(IF/ELSE)、并行处理、人工复核等结构

  • 例:合同审核流程自动识别「金额>100万」时增加法务会签环节

2. 多系统协同的粘合剂

「提示词的局限」

  • 纯语言模型无法直接调用API、读写数据库或触发硬件设备

「工作流的价值」

  • 构建「输入理解→数据处理→动作执行」的闭环

  • 实现跨系统联动(如:识别用户退订意向→查询CRM记录→生成挽留话术→自动发送优惠券)

  • 通过连接器与ERP/邮件系统/物联网设备无缝对接

3. 动态环境适应性

「提示词的局限」

  • 静态指令难以应对实时变化(如库存状态更新、突发政策调整)

「工作流的价值」

  • 嵌入事件监听机制(如当供应链系统库存低于阈值时自动触发补货流程)

  • 支持实时数据注入下的流程动态调整

  • 例:电商客服对话中识别「物流异常」,立即调取运单数据并跳转至赔偿流程

4. 质量控制的工业化保障

「提示词的局限」:依赖单次生成质量,缺乏纠错与验证机制

「工作流的价值」

  • 设置多重校验节点(AI初步回复→合规性过滤→人工抽检)

  • 构建反馈闭环(将bad case自动加入训练数据集)

  • 实现过程可追溯(完整记录每个决策节点的输入输出)

5. 资源调度与负载管理

「提示词的局限」

  • 无法自主分配算力、管理并发或优化响应延迟

「工作流的价值」

  • 智能路由机制(简单问题用轻量模型,复杂问题调用GPT-4)

  • 流量削峰设计(高峰期自动缓存请求队列)

  • 成本优化策略(根据任务优先级动态选择API供应商)

6. 企业级可维护性

「提示词的局限」

  • 散落的Prompt难以系统化迭代

「工作流的价值」

  • 版本控制(灰度发布新流程,AB测试不同节点设计)

  • 模块化复用(将验证通过的「客户身份核验」模块嵌入多个业务流程)

  • 可视化监控(实时查看各节点耗时、错误率等指标)

核心差异总结表

在这里插入图片描述

提示词是「让AI理解某个具体问题」,而工作流是「让企业级业务在AI驱动下可靠运转」。正如螺丝钉(Prompt)和自动化生产线(Workflow)的关系——单个零件的精密度再高,也需要系统设计才能实现规模化价值输出。

二、创建一个简单工作流

工作流内置了大语言模型(LLM)节点,你可以将用户输入的内容传输给 LLM 进行处理并返回。

相对于不使用工作流的智能体,包含大模型节点的工作流可单独指定模型的各项配置参数,通过附加的提示词约束模型的行为,使智能体在指定场景下的运行过程更稳定、输出内容更符合预期效果。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

到此,一个简单的工作流创建完毕。


三、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 实现返回图片功能的工作流配置 在扣子工作流中实现返回图片的功能涉及多个方面,包括但不限于接收用户输入、处理请求以及最终呈现图片给用户。为了达成这一目标,可以采用如下方法: #### 接收并解析用户需求 当接收到用户的描述时,需对其进行细致解析以理解所需生成的具体内容[^1]。 ```python def parse_user_input(user_description): """ 解析用户对于想要创建的图像的文字描述。 参数: user_description (str): 用户提供的关于期望得到的图像的信息 返回: dict: 包含解析后的参数字典 """ parsed_data = {"description": user_description} # 这里应该加入更多的逻辑来深入分析用户的需求... return parsed_data ``` #### 处理请求与生成图片 基于解析的结果调用相应的API或内部函数来进行实际的图片创作过程。这一步骤可能涉及到复杂的算法和技术栈的选择,比如使用预训练模型或是自定义神经网络架构等技术手段。 ```python from PIL import Image, ImageDraw, ImageFont def generate_image(parsed_request): """ 根据解析的数据生成一张新的图像文件。 参数: parsed_request (dict): 来自parse_user_input() 函数输出的对象 返回: str: 新创建图像保存路径字符串 """ img = Image.new('RGB', (200, 200), color = 'white') d = ImageDraw.Draw(img) font = ImageFont.load_default() d.text((10,10),"Sample Text",(0,0,0),font=font) output_path = "output.png" img.save(output_path) return output_path ``` #### 将生成好的图片反馈给用户 最后,在完成上述两步之后,通过适当的方式把新产生的图片发送回前端界面供用户查看。此部分取决于具体的框架设计,可能是直接嵌入HTML页面内联展示,也有可能是以链接形式提供下载选项。 ```html <img src="path_to_generated_image" alt="Generated by system"/> <a href="download_link">点击这里下载您的定制化作品</a> ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值