【Games101笔记】线性代数基础

  • 向量乘法
    • 点乘(内积)
      • a ⋅ b = ∥ a ∥ ∥ b ∥ cos ⁡ θ \boldsymbol{a} \cdot \boldsymbol{b}=\Vert a \Vert \Vert b \Vert \cos \theta ab=abcosθ θ \theta θ a \boldsymbol{a} a b \boldsymbol{b} b 的夹角
      • 两个向量夹角的余弦 cos ⁡ θ = a ⋅ b ∥ a ∥ ∥ b ∥ \cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\Vert a \Vert \Vert b \Vert} cosθ=abab ,对于单位向量有 cos ⁡ θ = a ^ ⋅ b ^ \cos \theta=\hat a \cdot \hat b cosθ=a^b^
      • 基本性质
        • 交换律: a ⋅ b = b ⋅ a \boldsymbol {a} \cdot \boldsymbol {b}=\boldsymbol{b} \cdot \boldsymbol{a} ab=ba
        • 结合律: k ( a ⋅ b ) = ( k a ) ⋅ b = a ⋅ ( k b ) k(\boldsymbol{a} \cdot \boldsymbol{b})=(k \boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a} \cdot (k \boldsymbol{b}) k(ab)=(ka)b=a(kb)
        • 分配律: a ⋅ ( b + c ) = a ⋅ b + a ⋅ c \boldsymbol{a} \cdot (\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{c} a(b+c)=ab+ac
      • 坐标形式
        • a = ( x a , y a ) \boldsymbol{a}=(x_a, y_a) a=(xa,ya) , b = ( x b , y b ) \boldsymbol{b}=(x_b, y_b) b=(xb,yb) , a ⋅ b = x a x b + y a y b \boldsymbol{a} \cdot \boldsymbol{b}=x_a x_b+y_a y_b ab=xaxb+yayb
        • a = ( x a , y a , z a ) \boldsymbol{a}=(x_a, y_a, z_a) a=(xa,ya,za) , b = ( x b , y b , z b ) \boldsymbol{b}=(x_b, y_b, z_b) b=(xb,yb,zb) , a ⋅ b = x a x b + y a y b + z a z b \boldsymbol{a} \cdot \boldsymbol{b}=x_a x_b+y_a y_b+z_a z_b ab=xaxb+yayb+zazb
      • 矩阵形式
        • a ⋅ b = a T ⋅ b = [ x a y a z a ] [ x b y b z b ] \boldsymbol{a}\cdot\boldsymbol{b}=\boldsymbol{a}^{\rm{T}}\cdot\boldsymbol{b}=\begin{bmatrix}x_a & y_a & z_a\end{bmatrix} \begin{bmatrix}x_b \\ y_b \\ z_b\end{bmatrix} ab=aTb=[xayaza]xbybzb
      • 在图形学中的应用 #card
        • 计算两个向量的夹角,测量两个方向有多近
        • 计算一个向量在另一个向量上的投影,分解向量
          • 在这里插入图片描述
          • b \boldsymbol{b} b a \boldsymbol{a} a 上的投影 b ⊥ \boldsymbol{b}_\perp b 沿着 a \boldsymbol{a} a 的方向: b ⊥ = k a ^ \boldsymbol{b}_\perp=k \hat{a} b=ka^ ,其中 k = ∥ b ∥ cos ⁡ θ k=\Vert b \Vert \cos \theta k=bcosθ
        • 确定正方向和负方向
          • 在这里插入图片描述
          • a \boldsymbol{a} a 的方向定为正方向,则与 a \boldsymbol{a} a 点乘结果为正的向量所在方向为正,点乘结果为负的向量所在方向为负
    • 叉乘(外积)
      • 在这里插入图片描述

      • 积与两个初始向量垂直,方向由右手法则确定 #card

      • ∥ a × b ∥ = ∥ a ∥ ∥ b ∥ sin ⁡ ϕ \Vert \boldsymbol{a} \times \boldsymbol{b} \Vert=\Vert a \Vert \Vert b \Vert \sin \phi a×b=absinϕ #card

      • 基本性质 #card

        • 不满足交换律: a × b = − b × a \boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a} a×b=b×a
        • 分配律: a × ( a + b ) = a × b + a × c \boldsymbol{a} \times (\boldsymbol{a} + \boldsymbol{b}) = \boldsymbol{a} \times \boldsymbol{b} + \boldsymbol{a} \times \boldsymbol{c} a×(a+b)=a×b+a×c
        • 结合律: k ( a × b ) = ( k a ) × b = a × ( k b ) k(\boldsymbol{a} \times \boldsymbol{b})=(k \boldsymbol{a})\times \boldsymbol{b}=\boldsymbol{a} \times (k \boldsymbol{b}) k(a×b)=(ka)×b=a×(kb)
        • a × a = 0 \boldsymbol {a} \times \boldsymbol{a}=\boldsymbol{0} a×a=0
        • { x × y = + z y × z = + x z × x = + y y × x = − z z × y = − x x × z = − y \begin{cases} \boldsymbol{x} \times \boldsymbol{y} = +\boldsymbol{z} \\ \boldsymbol{y} \times \boldsymbol{z} = +\boldsymbol{x} \\ \boldsymbol{z} \times \boldsymbol{x} = +\boldsymbol{y} \\ \boldsymbol{y} \times \boldsymbol{x} = -\boldsymbol{z} \\ \boldsymbol{z} \times \boldsymbol{y} = -\boldsymbol{x} \\ \boldsymbol{x} \times \boldsymbol{z} = -\boldsymbol{y} \end{cases} x×y=+zy×z=+xz×x=+yy×x=zz×y=xx×z=y ,满足 x × y = ± z \boldsymbol{x} \times \boldsymbol{y} = \pm\boldsymbol{z} x×y=±z 的坐标系称为右手/左手坐标系
      • 坐标形式 #card

        • a × b = ( y a z b − z a y b z a x b − x a z b x a y b − y a x b ) \boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix}y_a z_b - z_a y_b \\ z_a x_b - x_a z_b \\ x_a y_b - y_a x_b \end{pmatrix} a×b=yazbzaybzaxbxazbxaybyaxb
      • 矩阵形式 #card

        • a × b = A b = [ 0 − z a y a z a 0 − x a − y a x a 0 ] [ x b y b z b ] \boldsymbol{a}\times\boldsymbol{b}=\mathbf{A}\boldsymbol{b}=\begin{bmatrix}0 & -z_a & y_a\\z_a & 0 & -x_a\\-y_a & x_a & 0\end{bmatrix}\begin{bmatrix}x_b \\ y_b \\ z_b\end{bmatrix} a×b=Ab=0zayaza0xayaxa0xbybzb
      • 在图形学中的应用 #card

        • 确定顺时针和逆时针
          • b × a \boldsymbol{b} \times \boldsymbol{a} b×a 为正向量: b \boldsymbol{b} b a \boldsymbol{a} a 的顺时针方向
          • b × a \boldsymbol{b} \times \boldsymbol{a} b×a 为负向量: b \boldsymbol{b} b a \boldsymbol{a} a 的逆时针方向
        • 确定点在三角形内/外
          • 在这里插入图片描述

          • A B → × A P → \overrightarrow{AB}\times\overrightarrow{AP} AB ×AP B C → × A P → \overrightarrow{BC}\times\overrightarrow{AP} BC ×AP C A → × C P → \overrightarrow{CA}\times\overrightarrow{CP} CA ×CP 均为正向量或负向量,则点 P \rm{P} P △ A B C \vartriangle\rm{ABC} ABC 内,否则在 △ A B C \vartriangle\rm{ABC} ABC

  • 正交坐标系
    • 使用三个两两正交的单位向量 u \boldsymbol{u} u v \boldsymbol{v} v w \boldsymbol{w} w 建立右手正交坐标系,则对空间内任意向量 p \boldsymbol{p} p
      p = ( p ⋅ u ) u + ( p ⋅ v ) v + ( p ⋅ w ) w \boldsymbol{p}=(\boldsymbol{p}\cdot\boldsymbol{u})\boldsymbol{u}+(\boldsymbol{p}\cdot\boldsymbol{v})\boldsymbol{v}+(\boldsymbol{p}\cdot\boldsymbol{w})\boldsymbol{w} p=(pu)u+(pv)v+(pw)w p ⋅ u \boldsymbol{p}\cdot\boldsymbol{u} pu p \boldsymbol{p} p u \boldsymbol{u} u 上的投影。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值