GAMES101-计算机图形学学习笔记-基本线性代数

原视频教程链接:https://www.bilibili.com/video/BV1X7411F744

向量

点乘

a → ⋅ b → = ∥ a → ∥ ∥ b → ∥ cos ⁡ θ = { x 1 y 1 z 1 } { x 2 y 2 y 2 } = x 1 x 2 + y 1 y 2 + z 1 z 2 \overrightarrow{a} · \overrightarrow{b} = \lVert\overrightarrow{a}\rVert \lVert\overrightarrow{b}\rVert \cos\theta = \left\{ \begin{matrix} x1 & y1 & z1 \end{matrix} \right\} \left\{ \begin{matrix} x2 \\ y2 \\ y2 \end{matrix} \right\} = x1x2 + y1y2 + z1z2 a b =a b cosθ={x1y1z1}x2y2y2=x1x2+y1y2+z1z2

投影

ba 上的投影: b → ⊥ = k a ^ \overrightarrow{b}_\perp = k\hat{a} b =ka^

模长的大小: k = ∥ b → ∥ cos ⁡ θ k = \lVert\overrightarrow{b}\rVert \cos\theta k=b cosθ

叉乘

a   X   b = − b   X   a a \space X \space b = -b \space X \space a a X b=b X a

模长: ∥ a X b ∥ = ∥ a ∥   ∥ b ∥   sin ⁡ θ \lVert a X b\rVert = \lVert a\rVert\space\lVert b\rVert\space\sin\theta aXb=a b sinθ

方向: 右手螺旋法则,手指方向从a旋转到b,拇指方向为其方向

判断点P是否在三角型内部:

A B →   X   A P →      B C →   X   B P →      C A →   X   C P → \overrightarrow{AB}\space X \space \overrightarrow{AP} \space\space\space\space \overrightarrow{BC}\space X \space \overrightarrow{BP} \space\space\space\space \overrightarrow{CA}\space X \space \overrightarrow{CP} AB  X AP     BC  X BP     CA  X CP

三者符号相同说明P在三个向量的同一侧,即在三角形内部

正交坐标系

对于任意三个向量,若满足:

∥ u → ∥ = ∥ v → ∥ = ∥ w → ∥ = 1 \lVert \overrightarrow{u} \rVert = \lVert \overrightarrow{v} \rVert = \lVert \overrightarrow{w} \rVert = 1 u =v =w =1

u → ⋅ v → = v → ⋅ w → = u → ⋅ w → = 0 \overrightarrow{u} · \overrightarrow{v} = \overrightarrow{v} · \overrightarrow{w} = \overrightarrow{u} · \overrightarrow{w} = 0 u v =v w =u w =0

w → = u → X v → \overrightarrow{w} = \overrightarrow{u} X \overrightarrow{v} w =u Xv (right-handed)

则任意向量p可表示为
p → = ( p → ⋅ u → ) u → + ( p → ⋅ v → ) v → + ( p → ⋅ w → ) w →   \overrightarrow{p} = (\overrightarrow{p} · \overrightarrow{u})\overrightarrow{u}+ (\overrightarrow{p} · \overrightarrow{v})\overrightarrow{v}+ (\overrightarrow{p} · \overrightarrow{w})\overrightarrow{w}\space p =(p u )u +(p v )v +(p w )w   (在三个方向上的投影)

矩阵运算

二维向量按y轴镜像: { − 1 0 0 1 } { x y } = { − x y } \left\{ \begin{matrix} -1 & 0 \\ 0 & 1 \end{matrix} \right\} \left\{ \begin{matrix} x\\ y \end{matrix} \right\}= \left\{ \begin{matrix} -x \\ y \end{matrix} \right\} {1001}{xy}={xy}

乘积转置公式: ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

矩阵的逆

单位矩阵: I 3 x 3 = { 1 0 0 0 1 0 0 0 1 } I_{3x3} = \left\{ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right\} I3x3=100010001
公式:
A A − 1 = A − 1 A = I AA^{-1} = A^{-1}A = I AA1=A1A=I
( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值