目录
(原创文章,转载请注明出处)
一、线性运算
1.基本概念
行向量,列向量,分量(称为第i个分量),维数(分量个数),实向量,复向量,零向量(分量全为0),负向量(相对概念),相等向量(分量对应相等)
2.线性运算
加减,数乘,加法交换律,加法结合律,数乘结合律,数乘分配率
二、线性关系
1.向量组线性组合
1.1定义
,则称𝛽是的线性组合,或称𝛽可由线性表示
1.2性质
单位向量组:,,…,
- 零向量可由任一向量组线性表示
- 向量组中任一向量均可由该向量组线性表示
- 任一向量均可由其基本单位向量组唯一线性表示
2.向量组的等价
2.1定义
两个向量组能够相互线性表示,则称这两个向量组等价
2.2性质
反身性、对称性、传递性
2.3定理
向量组B可由向量组A表示的充要条件是:有解
3.向量组的线性相关
3.1定义
给定有𝑛维向量组,如果存在不全为零的数,使得:,则称线性相关,当且仅当全为零上述等式成立,则称线性无关
3.2性质
-
性质1
-
一个向量组线性相关⇔这个向量为零向量
-
一个向量组线性无关⇔这个向量为非零向量
-
性质2
-
两个向量线性相关⇔对应分量成比例
-
两个向量线性无关⇔对应分量不成比例
-
性质3
-
个向量线性相关⇔至少有一个向量可由其余个向量线性表示
-
个向量线性无关⇔任意向量都不能由其余个向量线性表示
-
性质4
-
向量组中有一部分向量线性相关,则整个向量线性相关
-
若一个向量组线性无关,则其任一部分向量组都线性无关
-
性质5
含有零向量的向量组一定线性相关
-
性质6
若一个向量组线性无关,则其延长向量组线性无关
3.3判定
前提:m个n维向量组成的矩阵:
其中:,
- 线性相关
- (即:矩阵A的秩小于向量个数)
- (即:向量个数小于小于向量维度)
- 线性无关
- (即:矩阵A的秩等于向量个数但小于向量维度)
- (即:矩阵A为方阵时,其行列式的值不为0)
三、极大线性无关组和秩
1.定义
1.1极大无关组
在向量组中,选取r个向量若满足:
(1) 线性无关;
(2) 中任一向量均可由线性表示
则称向量组为向量组的一个极大线性无关组
(向量组中任意x个向量线性无关,则任意x个向量都是极大无关组)
1.2向量组的秩
向量组的极大无关组中所含向量的个数称为该向量组的秩,记为;如果一个向量组仅含有零向量,则规定秩为零
2.推论
- 向量组线性无关⇔
- 向量组线性相关⇔
3.定理
- 等价的向量组的秩相同(但有相同的秩的向量组不能保证等价)
- A为矩阵,则:A的秩等于A的行秩,也等于A的列秩
4.总结
- 极大线性无关组就是向量组中个数最多的、线性无关的部分组
- 线性无关向量组的极大无关组就是该向量组
- 线性相关向量组的极大无关组不唯一
- 任一向量组与它的极大无关组等价
- 向量组的任意两个极大无关组等价
- 两个等价的线性无关的向量组所含向量的个数相等
- 两个向量组等价的充要条件是它们的极大无关组等价
四、空间向量
(要求低)
1.空间向量
设V是n维向量的非空集合,如果V对加法和数乘这两种运算都封闭,即
①若, 则 ②若,,则
则称V是R上的空间向量
2.空间向量的基
设V是空间向量,若V中有m个向量满足
①线性无关 ②V中任意一个向量都能由线性表示
则称为空间向量V的一组基
五、向量内积
1.基本概念
- 向量内积:给定中向量,,则称为向量𝛼与𝛽的内积,记为(𝛼,𝛽)
- 向量长度:给定中任意向量,称为𝛼的长度(范数、模)
- 单位向量:当,称𝛼为单位向量
- 向量单位化:(),这一过程叫做向量单位化
- 向量夹角:设𝑛维向量,,,称为向量𝛼与𝛽的夹角
2.相关性质
- 内积性质:可交换性,数乘分配性,非负性
- 长度性质:非负性,齐次性,三角不等式
3.正交规范化
3.1正交定义
如果向量𝛼,𝛽的内积为零,即(𝛼,𝛽)=0,则称𝛼和𝛽正交
3.2几何意义
𝛼和𝛽正交,则其夹角为90度,即𝛼⊥𝛽
3.3正交向量组
- 定义
- 正交向量组:若一个非零向量组中任意向量两两正交,则称该向量组为正交向量组
- 标准正交向量组:若正交向量组中每一个向量都是单位向量,则称为标准正交向量组
- 标准正交基:若标准正交向量组的秩等于向量空间维度,则称该标准正交向量组为标准正交基
- 性质
- 零向量与任何向量正交
- 与自己正交的向量只有零向量
- 正交向量组是线性无关的
- 正交化
斯密特正交化(不包括标准化),具体内容请参阅相关书籍
4.正交矩阵
- 定义:若𝑛阶方阵𝐴满足,则称𝐴为𝑛阶正交矩阵
- 性质(设A是n阶正交矩阵)
- (A的行列式为1或-1)
- (A可逆,则A的逆矩阵与转置矩阵相等)
- 𝐴的列向量组是的一个标准正交基
若有不妥之处,恳请读者批评指正