【线性代数】第3章:向量与空间向量(大学期末考试必看)

目录

一、线性运算

1.基本概念

2.线性运算

二、线性关系

1.向量组线性组合

1.1定义

1.2性质

2.向量组的等价

2.1定义

2.2性质

2.3定理

3.向量组的线性相关

3.1定义

3.2性质

3.3判定

三、极大线性无关组和秩

1.定义

1.1极大无关组

1.2向量组的秩

2.推论

3.定理

4.总结

四、空间向量

1.空间向量

2.空间向量的基

五、向量内积

1.基本概念

2.相关性质

3.正交规范化

3.1正交定义

3.2几何意义

3.3正交向量组

4.正交矩阵


(原创文章,转载请注明出处)

一、线性运算

1.基本概念

行向量,列向量,分量(a_i称为第i个分量),维数(分量个数),实向量,复向量,零向量(分量全为0),负向量(相对概念),相等向量(分量对应相等)

2.线性运算

加减,数乘,加法交换律,加法结合律,数乘结合律,数乘分配率 

二、线性关系

1.向量组线性组合

1.1定义

\beta=k_1\alpha_1+k_2\alpha_2+\ldots+k_m\alpha_m,则称𝛽是\alpha_1,\alpha_2,\ldots,\alpha_m的线性组合,或称𝛽可由\alpha_1,\alpha_2,\ldots,\alpha_m线性表示

1.2性质

单位向量组:e_1=\left(1,0,\cdots,0\right)^Te_2=\left(0,1,\cdots,0\right)^T,…,e_n=\left(0,0,\cdots,1\right)^T

  • 零向量可由任一向量组线性表示
  • 向量组中任一向量均可由该向量组线性表示
  • 任一向量均可由其基本单位向量组唯一线性表示

2.向量组的等价

2.1定义

两个向量组能够相互线性表示,则称这两个向量组等价

2.2性质

反身性、对称性、传递性

2.3定理

向量组B可由向量组A表示的充要条件是:AX=B有解

3.向量组的线性相关

3.1定义

给定有𝑛维向量组\alpha_1,\alpha_2,\ldots,\alpha_m,如果存在不全为零的数k_1,k_2,\ldots,k_m,使得:k_1\alpha_1+k_2\alpha_2+\ldots+k_m\alpha_m=0,则称线性相关,当且仅当k_1,k_2,\ldots,k_m全为零上述等式成立,则称线性无关

3.2性质

  • 性质1

  1. 一个向量组线性相关⇔这个向量为零向量

  2. 一个向量组线性无关⇔这个向量为非零向量

  • 性质2

  1. 两个向量线性相关⇔对应分量成比例

  2. 两个向量线性无关⇔对应分量不成比例

  • 性质3

  1. m\left(m\geq2\right)个向量线性相关⇔至少有一个向量可由其余m-1个向量线性表示

  2. m\left(m\geq2\right)个向量线性无关⇔任意向量都不能由其余m-1个向量线性表示

  • 性质4

  1. 向量组中有一部分向量线性相关,则整个向量线性相关

  2. 若一个向量组线性无关,则其任一部分向量组都线性无关

  • 性质5

        含有零向量的向量组一定线性相关

  • 性质6

        若一个向量组线性无关,则其延长向量组线性无关

3.3判定

        前提:m个n维向量组成的矩阵:A=\left(\alpha_1,\alpha_2,\ldots,\alpha_m\right)=\left[\begin{matrix}a_{11}&a_{12}&\begin{matrix}\cdots&a_{1m}\\\end{matrix}\\a_{21}&a_{22}&\begin{matrix}\cdots&a_{2m}\\\end{matrix}\\\begin{matrix}\vdots\\a_{n1}\\\end{matrix}&\begin{matrix}\vdots\\a_{n2}\\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\a_{nm}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]
        其中:\alpha_i=\left(a_{1i},a_{2i},\ldots a_{ni}\right)^Ti=1,2,\ldots,m

  • 线性相关
  1. r\left(A\right)<m(即:矩阵A的秩小于向量个数)
  2. n<m(即:向量个数小于小于向量维度)
  • 线性无关
  1. r\left(A\right)=m<n(即:矩阵A的秩等于向量个数但小于向量维度)
  2. m=n,\left|A\right|\neq0(即:矩阵A为方阵时,其行列式的值不为0)

三、极大线性无关组和秩

1.定义

1.1极大无关组

在向量组\alpha_1,\alpha_2,\cdots,\alpha_m中,选取r个向量\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r}若满足:

(1) \alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r}线性无关;

(2) \alpha_1,\alpha_2,\cdots,\alpha_m中任一向量均可由\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r}线性表示

则称向量组\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r}为向量组\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r}的一个极大线性无关组

(向量组中任意x个向量线性无关,则任意x个向量都是极大无关组)

1.2向量组的秩

向量组\alpha_1,\alpha_2,\cdots,\alpha_m的极大无关组中所含向量的个数称为该向量组的秩,记为r\left(\alpha_1,\alpha_2,\cdots,\alpha_m\right);如果一个向量组仅含有零向量,则规定秩为零

2.推论

  • 向量组r\left(\alpha_1,\alpha_2,\cdots,\alpha_m\right)线性无关⇔r\left(\alpha_1,\alpha_2,\cdots,\alpha_m\right)=m
  • 向量组r\left(\alpha_1,\alpha_2,\cdots,\alpha_m\right)线性相关⇔r\left(\alpha_1,\alpha_2,\cdots,\alpha_m\right)<m

3.定理

  • 等价的向量组的秩相同(但有相同的秩的向量组不能保证等价)
  • A为m\times n矩阵,则:A的秩等于A的行秩,也等于A的列秩

4.总结

  • 极大线性无关组就是向量组中个数最多的、线性无关的部分组
  • 线性无关向量组的极大无关组就是该向量组
  • 线性相关向量组的极大无关组不唯一
  • 任一向量组与它的极大无关组等价
  • 向量组的任意两个极大无关组等价
  • 两个等价的线性无关的向量组所含向量的个数相等
  • 两个向量组等价的充要条件是它们的极大无关组等价

四、空间向量

(要求低)

1.空间向量

设V是n维向量的非空集合,如果V对加法和数乘这两种运算都封闭,即

①若\alpha\in V, \beta\in V\alpha+\beta\in V  ②若\alpha\in Vk\in R,则k\alpha\in V

则称V是R上的空间向量

2.空间向量的基

设V是空间向量,若V中有m个向量\alpha_1,\alpha_2,\cdots,\alpha_m满足

\alpha_1,\alpha_2,\cdots,\alpha_m线性无关  ②V中任意一个向量都能由​​​​​​​\alpha_1,\alpha_2,\cdots,\alpha_m线性表示

则称​​​​​​​\alpha_1,\alpha_2,\cdots,\alpha_m为空间向量V的一组基

五、向量内积

1.基本概念

  • 向量内积:给定R^n中向量\alpha=\left ( \alpha_1,\alpha_2,\cdots,\alpha_n \right )^{T}\beta=\left ( \ b_1,\ b_2,\cdots,\ b_n \right )^{T},则称\sum_{i=1}^{n}{a_ib_i}为向量𝛼与𝛽的内积,记为(𝛼,𝛽)
  • 向量长度:给定​​​​​​​R^n中任意向量\alpha=\left ( \alpha_1,\alpha_2,\cdots,\alpha_n \right )^{T}\left \| \alpha \right \|=\sqrt{a_1^2+a_2^2+\cdots+a_n^2}称为𝛼的长度(范数、模)
  • 单位向量:当\left \| \alpha \right \|=1,称𝛼为单位向量
  • 向量单位化:\left \| \ e \right \|=\left \| \frac{\alpha}{\left \| \alpha \right \|} \right \|=1\left \| \alpha \right \|\neq 0),这一过程叫做向量单位化
  • 向量夹角:设𝑛维向量\alpha \neq 0\beta \neq 0\theta =\arccos \frac{\left ( \alpha , \beta \right )}{\left \| \alpha \right \|\left \| \beta \right \|},称为向量𝛼与𝛽的夹角

2.相关性质

  • 内积性质:可交换性,数乘分配性,非负性
  • 长度性质:非负性,齐次性,三角不等式

3.正交规范化

3.1正交定义

如果向量𝛼,𝛽的内积为零,即(𝛼,𝛽)=0,则称𝛼和𝛽正交

3.2几何意义

𝛼和𝛽正交,则其夹角为90度,即𝛼⊥𝛽

3.3正交向量组

  • 定义
  1. 正交向量组:若一个非零向量组中任意向量两两正交,则称该向量组为正交向量组
  2. 标准正交向量组:若正交向量组中每一个向量都是单位向量,则称为标准正交向量组
  3. 标准正交基:若标准正交向量组的秩等于向量空间维度,则称该标准正交向量组为标准正交基
  • 性质
  1. 零向量与任何向量正交
  2. 与自己正交的向量只有零向量
  3. 正交向量组是线性无关的
  • 正交化

        斯密特正交化(不包括标准化),具体内容请参阅相关书籍

4.正交矩阵

  • 定义:若𝑛阶方阵𝐴满足A^T A= E,则称𝐴为𝑛阶正交矩阵
  • 性质(设A是n阶正交矩阵)
  1. \left | A \right |= \pm 1(A的行列式为1或-1)
  2. A^{-1}=A^T(A可逆,则A的逆矩阵与转置矩阵相等)
  3. 𝐴的列向量组是R^n的一个标准正交基

若有不妥之处,恳请读者批评指正

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值