【路径规划】基于动物迁徙优化算法实现栅格地图机器人路径规划附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

⛄ 内容介绍

近年来,随着工业4.0的兴起,国内外制造业都在积极进行智能化的转型升级。 作为生产制造环节的搬运工———移动机器人,其在制造业中的重要程度与日俱增。 作为移动机器人关键技术之一的路径规划技术,其在很大程度上决定了机器人本身乃至整条生产线智能化的水平,引发了国内外专家的研究热潮。 机器人的路径规划是指在满足机器人工作条件的基础上,尽可能地找到一条从初始点到目标点的最短且能避开障碍、保证自身安全的路径。为此,针对路径规划问题,国内外专家及学者们提出了许多经典的算法,诸如A*算法、遗传算法、模拟退化算法、启发式搜索法、粒子群算法及蚁群算法等,它们都已应用于机器人的路径规划研究中,并取得了较好的成果。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定

原理

基于动物迁徙优化的机器人路径规划算法是一种启发式算法,受到动物迁徙行为的启发,用于解决机器人路径规划问题。该算法模拟了动物迁徙的行为和策略,通过优化机器人的路径选择,以达到最优或接近最优的路径规划结果。

以下是基于动物迁徙优化的机器人路径规划算法的一般步骤:

  1. 初始化种群:随机生成初始种群,每个个体代表一条可能的路径解决方案。路径可以表示为机器人依次经过的位置序列。

  2. 适应度函数:定义适应度函数,用于评估每个个体的适应度。在路径规划中,适应度可以根据路径的长度、时间、能耗等指标进行评估。

  3. 动物迁徙策略:根据动物迁徙行为的特点和策略,设计迁徙操作。例如,可以模拟鸟类的觅食、探索和归巢行为,或者其他动物的寻找资源、避开障碍等行为。

  4. 迁徙操作:对当前种群中的个体进行迁徙操作。这可能包括局部搜索、全局搜索、信息传递等策略,以寻找更优的路径。

  5. 适应度评估和选择:计算迁徙后个体的适应度,并根据一定的选择策略(如轮盘赌选择)选择一部分个体作为下一代。

  6. 终止条件:根据预设的终止条件(如达到最大迭代次数、找到最优解等),判断是否结束迭代。

  7. 输出结果:选取适应度最好的个体作为最终的路径规划结果。

⛄ 部分代码

function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

⛄ 参考文献

[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

### 基于混沌博弈优化算法实现机器人栅格地图路径规划MATLAB代码 #### 1. 初始化参数设置 首先定义一些必要的初始化参数,包括环境尺寸、障碍物位置以及起始点和目标点的位置。 ```matlab % 定义栅格地图大小 mapSize = [50, 50]; % 障碍物位置 (随机生成若干个障碍物) obstacles = randi([1 mapSize], [2, 20]); % 设置起点和终点坐标 startPoint = [5; 5]; goalPoint = [45; 45]; ``` #### 2. 构建栅格地图并可视化 创建一个二值化的栅格图表示法,并绘制出来以便观察。 ```matlab function gridMap = createGridMap(mapSize, obstacles) % 创建空白的地图矩阵 gridMap = zeros(mapSize(1), mapSize(2)); % 将障碍物标记为1 for i = 1:size(obstacles, 2) rowIdx = obstacles(1,i); colIdx = obstacles(2,i); gridMap(rowIdx,colIdx) = 1; end figure(); imagesc(gridMap); axis image; colorbar; end gridMap = createGridMap(mapSize, obstacles); hold on; plot(startPoint(2), startPoint(1), 'go', 'MarkerFaceColor','g'); % 绘制起点 plot(goalPoint(2), goalPoint(1), 'ro', 'MarkerFaceColor','r'); % 绘制终点 title('Robot Path Planning with CGO Algorithm'); xlabel('X-axis'), ylabel('Y-axis'); ``` #### 3. 混沌映射函数设计 采用Logistic Map作为混沌序列发生器的一部分,用于产生具有良好遍历性的初始种群个体。 ```matlab function chaoticSequence = logisticMap(x0, mu, iterNum) x = x0; chaoticSequence = zeros(iterNum, 1); for t=1:iterNum x = mu * x * (1-x); chaoticSequence(t) = round((x*max(mapSize)))+1; end end ``` #### 4. 博弈过程模拟 根据当前候选解集计算适应度值,并通过某种形式的选择压力促使较优方案胜出成为下一代成员之一。 ```matlab function newPopulation = gameTheorySelection(population, fitnessValues, selectionPressure) [~, sortedIndices] = sort(fitnessValues,'descend'); eliteCount = floor(selectionPressure * length(sortedIndices)); elites = population(:,sortedIndices(1:eliteCount)); % 获取精英个体 nonElites = population(:,setdiff(1:length(sortedIndices), sortedIndices(1:eliteCount))); offspring = crossoverAndMutation(elites, nonElites); % 对非精英部分做交叉变异操作 newPopulation = horzcat(offspring, elites); % 合并新旧两代形成新的群体 end ``` #### 5. 主循环逻辑控制 反复迭代执行上述各阶段直到满足终止条件为止,在此期间持续记录最佳路径及其对应的成本开销情况。 ```matlab populationSize = 50; iterationLimit = 100; initialPositions = arrayfun(@(n)logisticMap(rand(), 3.9, 2)', ... ones(1,populationSize),... 'UniformOutput', false); initialPaths = cell2mat(initialPositions); bestPathCosts = Inf; for gen=1:iterationLimit pathFitnesses = evaluatePathQuality(initialPaths, gridMap, startPoint, goalPoint)[^3]; selectedPopulations = gameTheorySelection(initialPaths, pathFitnesses, 0.2); if min(pathFitnesses)< bestPathCosts [~, idxBest]=min(pathFitnesses); optimalRoute = initialPaths(:,idxBest); bestPathCosts = pathFitnesses(idxBest); disp(['Generation ', num2str(gen), ': Best Cost=',num2str(bestPathCosts)]); end initialPaths = selectedPopulations; end ``` #### 6. 结果展示 最后一步是将找到的最佳路线显示在之前建立好的环境中供直观查看效果如何。 ```matlab if ~isempty(optimalRoute) plot(optimalRoute(2,:), optimalRoute(1,:), '-b*', 'LineWidth', 2); else warning('No feasible solution found!'); end legend({'Start Point', 'Goal Point', 'Optimized Route'},'Location','NorthEastOutside') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值