✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于最小二乘支持向量机(LSSVM)结合自适应带宽核密度估计(ABKDE)的多变量回归区间预测方法。该方法首先利用LSSVM建立多变量回归模型,然后利用ABKDE估计回归模型的残差分布,并根据残差分布构造区间预测。实证研究表明,该方法在预测精度和鲁棒性方面均优于传统的区间预测方法。
1. 引言
区间预测是统计学中的一种重要方法,它可以为预测结果提供一个置信区间,从而提高预测的可靠性。传统的区间预测方法主要有基于正态分布的区间预测方法、基于非参数方法的区间预测方法和基于支持向量机的区间预测方法。
基于正态分布的区间预测方法假设预测误差服从正态分布,然后根据正态分布的性质构造区间预测。这种方法简单易行,但当预测误差不服从正态分布时,预测精度会受到影响。
基于非参数方法的区间预测方法不假设预测误差的分布形式,而是直接利用数据样本构造区间预测。这种方法的优点是鲁棒性强,但计算量大,当样本量较大时,计算效率会降低。
基于支持向量机的区间预测方法将支持向量机用于区间预测,它可以有效地处理非线性数据,并且具有较高的预测精度。但是,传统的基于支持向量机的区间预测方法往往忽略了预测误差的分布信息,这可能会导致预测精度的下降。
2. 基于LSSVM-ABKDE的多变量回归区间预测方法
为了克服传统区间预测方法的不足,本文提出了一种基于LSSVM-ABKDE的多变量回归区间预测方法。该方法首先利用LSSVM建立多变量回归模型,然后利用ABKDE估计回归模型的残差分布,并根据残差分布构造区间预测。
具体步骤如下:
-
数据预处理:对原始数据进行标准化处理,将数据映射到[-1, 1]区间内。
-
LSSVM模型建立:利用LSSVM建立多变量回归模型,其中核函数选择径向基核函数,惩罚参数和核函数参数通过交叉验证确定。
-
残差分布估计:利用ABKDE估计回归模型的残差分布。ABKDE是一种非参数核密度估计方法,它可以自动选择核函数的带宽,从而提高密度估计的精度。
-
区间预测:根据残差分布构造区间预测。具体地,对于给定的置信水平α,可以构造出置信区间为[L, U]的区间预测,其中L和U分别为残差分布的α/2分位数和1-α/2分位数。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
3. 实证研究
为了验证该方法的有效性,本文将其应用于三个真实数据集的预测,并与传统的区间预测方法进行了比较。结果表明,该方法在预测精度和鲁棒性方面均优于传统的区间预测方法。
4. 结论
本文提出了一种基于LSSVM-ABKDE的多变量回归区间预测方法。该方法利用LSSVM建立多变量回归模型,然后利用ABKDE估计回归模型的残差分布,并根据残差分布构造区间预测。实证研究表明,该方法在预测精度和鲁棒性方面均优于传统的区间预测方法。
🔗 参考文献
[1] 金锋,赵珺,高兴兴,等.一种光伏出力短期区间预测方法:202010173047[P][2024-01-25].
[2] 陈莹,陈森发.基于LSSVM的城市年用水量预测模型[C]//江苏省系统工程学会第十届学术年会.0[2024-01-25].
[3] 张弦,王宏力.嵌入维数自适应最小二乘支持向量机状态时间序列预测方法[J].航空学报, 2010(12):6.DOI:CNKI:SUN:HKXB.0.2010-12-004.