【LSSVM-ABKDE区间预测】基于最小二乘支持向量机结合自适应带宽核密度估计多变量回归区间预测附Matlab代码

本文提出了一种结合LSSVM和ABKDE的多变量回归区间预测方法,通过利用LSSVM构建回归模型并估计残差分布,提高了预测精度和鲁棒性,实证分析显示其优于传统预测方法。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

本文提出了一种基于最小二乘支持向量机(LSSVM)结合自适应带宽核密度估计(ABKDE)的多变量回归区间预测方法。该方法首先利用LSSVM建立多变量回归模型,然后利用ABKDE估计回归模型的残差分布,并根据残差分布构造区间预测。实证研究表明,该方法在预测精度和鲁棒性方面均优于传统的区间预测方法。

1. 引言

区间预测是统计学中的一种重要方法,它可以为预测结果提供一个置信区间,从而提高预测的可靠性。传统的区间预测方法主要有基于正态分布的区间预测方法、基于非参数方法的区间预测方法和基于支持向量机的区间预测方法。

基于正态分布的区间预测方法假设预测误差服从正态分布,然后根据正态分布的性质构造区间预测。这种方法简单易行,但当预测误差不服从正态分布时,预测精度会受到影响。

基于非参数方法的区间预测方法不假设预测误差的分布形式,而是直接利用数据样本构造区间预测。这种方法的优点是鲁棒性强,但计算量大,当样本量较大时,计算效率会降低。

基于支持向量机的区间预测方法将支持向量机用于区间预测,它可以有效地处理非线性数据,并且具有较高的预测精度。但是,传统的基于支持向量机的区间预测方法往往忽略了预测误差的分布信息,这可能会导致预测精度的下降。

2. 基于LSSVM-ABKDE的多变量回归区间预测方法

为了克服传统区间预测方法的不足,本文提出了一种基于LSSVM-ABKDE的多变量回归区间预测方法。该方法首先利用LSSVM建立多变量回归模型,然后利用ABKDE估计回归模型的残差分布,并根据残差分布构造区间预测。

具体步骤如下:

  1. 数据预处理:对原始数据进行标准化处理,将数据映射到[-1, 1]区间内。

  2. LSSVM模型建立:利用LSSVM建立多变量回归模型,其中核函数选择径向基核函数,惩罚参数和核函数参数通过交叉验证确定。

  3. 残差分布估计:利用ABKDE估计回归模型的残差分布。ABKDE是一种非参数核密度估计方法,它可以自动选择核函数的带宽,从而提高密度估计的精度。

  4. 区间预测:根据残差分布构造区间预测。具体地,对于给定的置信水平α,可以构造出置信区间为[L, U]的区间预测,其中L和U分别为残差分布的α/2分位数和1-α/2分位数。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

3. 实证研究

为了验证该方法的有效性,本文将其应用于三个真实数据集的预测,并与传统的区间预测方法进行了比较。结果表明,该方法在预测精度和鲁棒性方面均优于传统的区间预测方法。

4. 结论

本文提出了一种基于LSSVM-ABKDE的多变量回归区间预测方法。该方法利用LSSVM建立多变量回归模型,然后利用ABKDE估计回归模型的残差分布,并根据残差分布构造区间预测。实证研究表明,该方法在预测精度和鲁棒性方面均优于传统的区间预测方法。

🔗 参考文献

[1] 金锋,赵珺,高兴兴,等.一种光伏出力短期区间预测方法:202010173047[P][2024-01-25].

[2] 陈莹,陈森发.基于LSSVM的城市年用水量预测模型[C]//江苏省系统工程学会第十届学术年会.0[2024-01-25].

[3] 张弦,王宏力.嵌入维数自适应最小二乘支持向量机状态时间序列预测方法[J].航空学报, 2010(12):6.DOI:CNKI:SUN:HKXB.0.2010-12-004.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值