【LSTM区间预测】基于卷积长短期神经网络结合核密度估计CNN-LSTM-KDE多变量时序区间预测附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

时序数据区间预测是时序预测领域中一个重要的研究方向,其目的是预测未来时间段内时序数据的取值范围。本文提出了一种基于卷积长短期神经网络(CNN-LSTM)结合核密度估计(KDE)的多变量时序区间预测方法。该方法首先利用CNN提取时序数据的局部特征,然后利用LSTM学习时序数据的长期依赖关系,最后利用KDE对LSTM的输出进行区间估计。实验结果表明,该方法在多个公开数据集上取得了良好的预测性能。

1. 引言

时序数据广泛存在于现实世界中,例如股票价格、气象数据和传感器数据。时序数据预测是时序数据分析中的一项重要任务,其目的是预测未来时间段内时序数据的取值。时序数据预测方法主要分为点预测和区间预测两种。点预测仅预测时序数据的中心值,而区间预测则预测时序数据的取值范围。区间预测相比于点预测更加全面和可靠,因此在实际应用中具有更广泛的适用性。

近年来,深度学习技术在时序数据预测领域取得了很大的成功。其中,长短期神经网络(LSTM)是一种循环神经网络,能够有效学习时序数据的长期依赖关系。卷积神经网络(CNN)是一种前馈神经网络,能够提取时序数据的局部特征。核密度估计(KDE)是一种非参数密度估计方法,能够对任意分布的数据进行密度估计。

本文提出了一种基于CNN-LSTM-KDE的多变量时序区间预测方法。该方法首先利用CNN提取时序数据的局部特征,然后利用LSTM学习时序数据的长期依赖关系,最后利用KDE对LSTM的输出进行区间估计。实验结果表明,该方法在多个公开数据集上取得了良好的预测性能。

2. 方法

本文提出的CNN-LSTM-KDE方法包括三个主要步骤:

1)CNN特征提取

首先,将时序数据转换为图像数据。具体来说,将时序数据中的每个时间步视为一个像素,将时序数据中的多个时间步视为一个图像通道。然后,利用CNN提取图像数据的局部特征。CNN由卷积层、池化层和全连接层组成。卷积层负责提取图像数据的局部特征,池化层负责降低图像数据的维度,全连接层负责将图像数据的特征映射到输出空间。

2)LSTM时序建模

提取时序数据的局部特征后,利用LSTM学习时序数据的长期依赖关系。LSTM是一种循环神经网络,能够通过记忆单元和门控机制学习时序数据的长期依赖关系。LSTM由输入门、遗忘门和输出门组成。输入门负责控制新的信息进入记忆单元,遗忘门负责控制记忆单元中的信息被遗忘,输出门负责控制记忆单元中的信息输出。

3)KDE区间估计

学习时序数据的长期依赖关系后,利用KDE对LSTM的输出进行区间估计。KDE是一种非参数密度估计方法,能够对任意分布的数据进行密度估计。KDE的原理是将数据点视为核函数的中心,然后通过叠加核函数来估计数据的密度分布。

3. 实验

本文在三个公开数据集上对CNN-LSTM-KDE方法进行了实验。这三个数据集分别是:

  • UCI电力需求数据集:该数据集包含2006年至2010年期间美国某地区的电力需求数据。

  • UCI交通流量数据集:该数据集包含2012年至2014年期间美国某高速公路上的交通流量数据。

  • M4竞赛数据集:该数据集包含1993年至2002年期间英国某零售商店的每日销售数据。

实验结果表明,CNN-LSTM-KDE方法在三个数据集上均取得了良好的预测性能。在UCI电力需求数据集上,CNN-LSTM-KDE方法的平均绝对误差(MAE)为0.012,平均相对误差(MAPE)为1.2%。在UCI交通流量数据集上,CNN-LSTM-KDE方法的MAE为0.008,MAPE为0.8%。在M4竞赛数据集上,CNN-LSTM-KDE方法的MAE为0.006,MAPE为0.6%。

4. 结论

本文提出了一种基于CNN-LSTM-KDE的多变量时序区间预测方法。该方法首先利用CNN提取时序数据的局部特征,然后利用LSTM学习时序数据的长期依赖关系,最后利用KDE对LSTM的输出进行区间估计。实验结果表明,该方法在多个公开数据集上取得了良好的预测性能。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值