在生成式AI时代,神经符号AI(Neurosymbolic AI)作为一种强大的方法,正逐渐在从感知到认知的各类任务中展现出卓越的能力。通过结合神经网络的模式识别能力和符号系统的逻辑推理能力,神经符号AI在基础的感知任务之外,还能实现更好的语义理解、对齐、解释性和可靠性。然而,由于神经符号AI尚处于发展的早期阶段,缺乏针对其任务量身定制的广泛可用的真实世界基准数据集。为了解决这一问题,并支持现有和未来方法的评估,本文介绍了DSceneKG——一个由多个开放自动驾驶数据集中的高质量真实场景构建而成的驾驶场景知识图谱套件。本文详细阐述了DSceneKG的构建过程,并重点介绍了其在七个不同任务中的应用。DSceneKG可以在GitHub上公开获取。
1 引言
将智能行为整合到AI系统中,需要两方面的能力:感知能力,即处理原始传感器数据,以及认知能力,即利用背景知识进行推理、规划和决策等任务。知识图谱在显式表示这些背景知识并使AI系统更有效地执行认知任务方面起着关键作用。虽然神经网络在模式识别方面表现出色,但由于缺乏这些显式表示,它们在执行可靠推理方面的能力受到限制。
2 DSceneKG:驾驶场景知识图谱
2.1 DSceneKG的开发
为了应对上述挑战,我们引入了DSceneKG,这是一个旨在表示来自多个自动驾驶数据集的真实驾驶数据的知识图谱套件。DSceneKG涵盖了广泛的驾驶场景,包括城市和农村环境、不同的天气条件以及各种交通情况。数据来源于多个自动驾驶基准数据集,涵盖了来自LiDAR、摄像头和GPS传感器的异构数据,为自动驾驶领域的研究和开发提供了丰富的多模态数据集。
2.2 构建过程
DSceneKG的构建包括以下几个步骤:
- 数据收集:从多个开放的自动驾驶数据集中收集高质量的驾驶场景数据。
- 数据整合:将来自不同传感器(如LiDAR、摄像头、GPS)的数据进行整合,形成统一的多模态数据表示。
- 知识表示:使用知识图谱技术,将整合后的数据转化为结构化的知识表示,包括实体、关系和属性。
- 质量控制:确保知识图谱的准确性和一致性,通过自动化和手动的方法进行数据验证和校正。
3 DSceneKG的应用:新兴神经符号AI能力
DSceneKG在工业和学术界都有重要的应用潜力。以下是DSceneKG在七个不同任务中的应用展示:
通过DSceneKG,AI系统能够更好地理解驾驶环境中的各种元素和它们之间的关系,从而提升机器感知的准确性。
3.2 知识补全与增强
DSceneKG可以用来补全和增强现有的知识图谱,帮助AI系统填补感知数据中的空白,提高整体知识的完整性。
3.3 语义搜索
利用DSceneKG,AI系统能够进行更为精准的语义搜索,快速查找到相关的驾驶场景和信息。
3.4 因果关系
DSceneKG帮助AI系统理解驾驶场景中的因果关系,从而进行更合理的决策和预测。
3.5 跨模态复杂数据检索
DSceneKG支持跨模态的数据检索,使得AI系统能够结合不同类型的数据(如图像、传感器数据)进行综合分析。
3.6 情景理解与预测
通过对驾驶场景的深入理解,DSceneKG帮助AI系统预测未来的驾驶行为和可能的交通状况。
3.7 决策支持
DSceneKG为AI系统的决策过程提供了丰富的背景知识,提升了决策的准确性和可靠性。
4 代码示例:如何使用DSceneKG进行查询
下面通过一个简单的代码示例,展示如何使用DSceneKG进行知识图谱查询。我们将使用Python和rdflib
库来加载和查询DSceneKG。
首先,确保安装了rdflib
库:
pip install rdflib
然后,使用以下代码加载知识图谱并进行简单的查询:
from rdflib import Graph, URIRef, Namespace, RDF
# 加载知识图谱
g = Graph()
g.parse("path_to_dscenekg.rdf", format="xml") # 请将"path_to_dscenekg.rdf"替换为实际文件路径
# 定义命名空间
NS = Namespace("http://example.org/dscenekg#")
# 查询在特定场景中的所有车辆
scene_id = "scene_001" # 示例场景ID
query = f"""
PREFIX ns: <http://example.org/dscenekg#>
SELECT ?vehicle
WHERE {{
ns:{scene_id} ns:containsVehicle ?vehicle .
}}
"""
# 执行查询
for row in g.query(query):
print(f"车辆: {row.vehicle}")
上述代码示例展示了如何加载DSceneKG的知识图谱文件,并查询特定场景中包含的所有车辆。通过类似的方法,可以进行更复杂的查询,如查找特定天气条件下的驾驶行为、分析交通流量等。
5 结论
本文介绍了DSceneKG——一个专为神经符号AI的新兴能力设计的驾驶场景知识图谱套件。DSceneKG基于真实世界的开放域数据集构建,整合了来自不同大陆和环境条件下的多模态驾驶场景数据。我们详细描述了DSceneKG的构建过程,并展示了其在七个不同任务中的应用,证明了其在提升神经符号AI能力方面的重要作用。DSceneKG的公开发布将为自动驾驶领域的研究和开发提供宝贵的资源,推动神经符号AI的发展。
6 致谢
本研究部分由国家科学基金(NSF)项目#2133842和#2119654资助。本文中的观点仅代表作者本人,不一定反映NSF的立场。
作者介绍
Ruwan Wickramarachchi是南卡罗来纳大学AI研究所的博士候选人。他的研究重点是引入神经符号方法进行场景理解,以提升自动驾驶和智能制造等自主系统中的机器感知和上下文理解能力。联系方式:ruwan@email.sc.edu