基于黏菌优化算法SMA优化LSTM的时间序列预测

  0 引言

        基于LSTM进行时间序列预测方法简单有效。LSTM的出现为时间序列预测提供了一个新的研究方向。然而,与大部分网络模型一样,LSTM效果受其超参数设置的影响。为此,本文采用黏菌优化算法AOA优化LSTM网络超参数,建立SMA-LSTM模型 ,  实例验证表明 , SMA-LSTM 模型的预测效果明显提高。

1 原理

1.1 LSTM原理

       此处不过多介绍!

1.2 黏菌优化算法

        黏菌优化算法Slime Mould Algorithm(SMA)是由 Li等人于 2020年提出的一种模拟黏菌在规食过程中的行为和形态变化的新型群体智能优化算法,其灵感启发来源于模拟多头绒泡菌的规食行为和形态变化,利用权值的变化模拟规食过程中黏菌本体产生的正反馈和负反馈过程,迚而产生三种阶段规食形态。该算法具有一定的收敛精度和较好的稳定性,因此已被广泛应用于优化应用领域。

 1.3 SMA优化LSTM原理

        以最小化LSTM网络的误差为适应度函数,SMA的作用就是尽量去找一组最优超参数使得网络误差最小化。本文中LSTM的主要几个超参数分别是:学习率lr,batchsize,训练次数K,两个隐含层的节点数L1和L2。
 

2 代码实现

        基于MATLAB2020b,进行模型搭建与优化。数据结构为时间序列,我们采用前n个时刻的值为输入,n+1时刻 的值为输出这样来进行滚动建模。

2.1 LSTM结果

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
黏菌算法是一种基于生物界的黏菌生长行为而发展出来的一种优化算法,它可以用于求解复杂的非线性优化问题。而LSTM是一种常用的循环神经网络,它在处理序列数据方面表现出色。优化LSTM的超参数可以提高模型的性能,而使用黏菌算法可以帮助我们更好地搜索超参数空间,找到最优的超参数组合。 具体来说,使用黏菌算法优化LSTM超参数的步骤如下: 1. 定义优化目标:比如最小化模型在验证集上的损失函数。 2. 定义超参数空间:比如学习率、隐藏层大小、dropout等。 3. 初始化黏菌群体:随机生成一些超参数组合作为初始群体。 4. 计算适应度:使用初始超参数组合训练模型,并在验证集上计算损失函数,作为初始适应度。 5. 迭代更新:根据黏菌生长的规则,更新黏菌的位置和适应度,直到达到停止条件(比如达到最大迭代次数或者适应度已经收敛)。 6. 输出最优超参数组合:输出适应度最高的超参数组合作为最优解。 下面是一个使用黏菌算法优化LSTM超参数的Python代码示例: ```python import numpy as np from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import LSTM, Dense from keras.callbacks import EarlyStopping from slime_mould import SlimeMouldOptimizer # 加载数据 data = np.load('data.npy') X, y = data[:, :-1], data[:, -1] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 定义模型 def create_model(params): model = Sequential() model.add(LSTM(params['hidden_size'], input_shape=(X_train.shape[1], 1))) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') return model # 定义适应度函数 def fitness(params): model = create_model(params) early_stopping = EarlyStopping(patience=5, verbose=1) history = model.fit(X_train.reshape(-1, X_train.shape[1], 1), y_train, validation_data=(X_val.reshape(-1, X_val.shape[1], 1), y_val), epochs=100, batch_size=32, callbacks=[early_stopping], verbose=0) return -history.history['val_loss'][-1] # 定义超参数空间 param_space = { 'hidden_size': [32, 64, 128], 'dropout': [0.2, 0.5, 0.8], 'learning_rate': [0.001, 0.01, 0.1] } # 初始化黏菌群体 slime_mould = SlimeMouldOptimizer(param_space, fitness, n_clusters=10, n_slime=100) # 迭代更新 best_params, best_fitness = slime_mould.evolve(100) # 输出最优超参数组合 print('Best params:', best_params) print('Best fitness:', -best_fitness) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值