低功耗设计-Power Switch

本文详细介绍了Power Switch在低功耗设计中的作用,包括power gating的结构(fine grain和coarse grain)、power switch的工作方式(Header和Footer)、switch cell的控制信号连接方式、布局策略以及UPF描述。同时,文中分享了设计实例,如二级电源设计和switch chain上的buffer问题,以帮助理解和避免设计中可能遇到的坑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Power Switch(电源开关单元)。用于电源关断技术(Power Shut Off, PSO),它通过关断芯片中block或module的供电电压,来达到降低功耗的目的。

 

1 power gating的结构

power gating的方式从结构上进行分类,可以分为fine grain和coarse grain两种。前者是将power gating功能加入每个standard cell内部,缺点是面积大,优点是控制灵活,ir drop更小;后者是将power gating做成单独的power switch cell,优点是较之fine grain增加的面积更小,缺点是power switch cell额外产生ir drop(做power shut off domain的instance ir drop分析时,power switch的ir drop也要算进去,所以power switch的选型很重要,通常使用低漏电的HVT)。目前常用的方式为coarse grain。

 

2 power switch的工作方式

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拾陆楼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值