Lyapunov稳定性分析1(正定函数、二次型正定判定)

7 篇文章 1 订阅
2 篇文章 0 订阅

一、 正定函数

1.1 定义:

V(x)是向量x标量函数S是x空间包含原点的封闭有限区域。如果对于S中的所有x,都有:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
V(x)是正定的(半正定)。正定函数更直观的描述如下图所示:
在这里插入图片描述
如果条件(3)中不等式的符号反向,则称V(x)是负定的(负半定的)。
如果在S域内,不论S多么小,V(x)既可为正值也可为负值时,则称 V(x)是不定的

1.2 举例:

在这里插入图片描述

二、 二次型

2.1 定义:

建立在李雅普诺夫第二方法上的稳定性分析中,有一类标量函数起着重要的作用,即为二次型函数
在这里插入图片描述
P为权矩阵,一般,有
在这里插入图片描述
则,有
在这里插入图片描述

在这里插入图片描述
其中P对称矩阵,即Pij=Pji

2.2 二次型正定判定

塞尔维斯特(Sylvester)定理
V(x)=xTP**x中的P是对称阵时,V(x)为正定的充要条件P的所有顺序主子式行列式都是正的,即
在这里插入图片描述
如果P的所有主子行列式为非负的(有的为零),那么V(x)即为半正定的。如果-V(x)是正定的(半正定的),则V(x)将是负定的(半负定的)。

2.2.1 举例:

Example1
在这里插入图片描述
所以V(x)正定。
Example2

A=[1 -3.5 4.5;2 -4.5 4.5;-1 1.5 -2.5];
B=[-0.5;-0.5;-0.5]';C=[1 0 1]; %系统状态方程
Q=eye(3,3);  %Q=I
P=lyap(A,Q); %求解矩阵P
%显示矩阵P的各阶主子式的值并判断是否稳定
flag=0;
disp('矩阵P的各阶主子式的值分别为:');
for i=1:length(A)  %判断是否稳定
 det(P(1:i,1:i))
 if real(P(i)) > 0
     flag = 1;
 end
end
if flag == 1
 disp('系统稳定');
else
 disp('系统不稳定');
end

得到:

矩阵P的各阶主子式的值分别为:

ans =

    1.4825


ans =

    0.6725


ans =

    0.1169

系统稳定

求解出来的矩阵P各阶主子式均大于0,所以系统稳定(见”Lyapunov稳定性分析2(连续时间系统)“有更详细分析)

  • 13
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值