NeMo训练llama2_7b(不用NeMo-Framework-Launcher)

@TOC

本文介绍了NeMo如何训练llama2_7b模型

1.参考链接

2.创建容器

docker run --gpus all --shm-size=32g -ti -e NVIDIA_VISIBLE_DEVICES=all \
        --privileged --net=host -v $PWD:/home \
        -w /home --name NeMo \
        nvcr.io/nvidia/nemo:24.05 /bin/bash
mkdir -p /home/NeMo

3.数据转换

cd /home/NeMo        
python /opt/NeMo/scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
        --input=/home/autotrain/datasets/timdettmers/openassistant-guanaco/openassistant_best_replies_train.jsonl \
        --json-keys=text \
        --tokenizer-library=sentencepiece \
        --tokenizer-model=/home/ModelLink/llama-2-7b-hf/tokenizer.model \
        --output-prefix=gpt_training_data \
        --append-eod \
        --workers=32

4.从零开始训练

python /opt/NeMo/examples/nlp/language_modeling/megatron_gpt_pretraining.py  \
        --config-path=/opt/NeMo-Framework-Launcher/launcher_scripts/conf/training/llama \
        --config-name=llama2_7b \
        trainer.devices=8 \
        trainer.num_nodes=1 \
        trainer.max_epochs=null \
        trainer.max_steps=300000 \
        trainer.val_check_interval=300 \
        trainer.log_every_n_steps=50 \
        trainer.limit_val_batches=50 \
        trainer.limit_test_batches
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi20240217

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值