使用dify的api连接外部知识库,dify连接ragflow的知识库(附java代码)

dify的知识库一般般,但是ragflow的知识库很强大,今天教大家如何使用dify连接ragflow的知识库

 一.ragflow的准备工作

1.在ragflow建立一个知识库,拿到知识库的id,红框圈出来的地方就是这个知识库的id,后面要用到

2.拿到ragflow的api的key 

二.写代码,将ragflow的接口返回的内容按照dify的标准格式进行组装

 这里我使用的是Java代码,本地直接新建一个空的springboot项目,然后将以下代码复制粘贴,修改下参数即可

实体类(无需修改)

public class RetrievalSetting {
    @NotNull
    private int top_k;
    @NotNull
    private float score_threshold;

    // Getters and Setters
    public int getTop_k() {
        return top_k;
    }

    public void setTop_k(int top_k) {
        this.top_k = top_k;
    }

    public float getScore_threshold() {
        return score_threshold;
    }

    public void setScore_threshold(float score_threshold) {
        this.score_threshold = score_threshold;
    }
}
public class RetrievalRequest {
    @NotBlank
    private String knowledge_id;
    @NotBlank
    private String query;
    @NotNull
    private RetrievalSetting retrieval_setting;

    // Getters and Setters
    public String getKnowledge_id() {
        return knowledge_id;
    }

    public void setKnowledge_id(String knowledge_id) {
        this.knowledge_id = knowledge_id;
    }

    public String getQuery() {
        return query;
    }

    public void setQuery(String query) {
        this.query = query;
    }

    public RetrievalSetting getRetrieval_setting() {
        return retrieval_setting;
    }

    public void setRetrieval_setting(RetrievalSetting retrieval_setting) {
        this.retrieval_setting = retrieval_setting;
    }
}
@RestController
@RequestMapping("/")
public class RetrievalController {
    private static final String ORIGINAL_API_URL = "http://你的ragflowapi的主机和端口/api/v1/retrieval";

    @PostMapping("/retrieval")
    public ResponseEntity<Map<String, List<Map<String, Object>>>> retrieveChunks(
            @RequestBody RetrievalRequest requestData,
            @RequestHeader("Authorization") String authorization) {
        // 验证 Authorization 头
        if (!authorization.startsWith("Bearer ")) {
            return ResponseEntity.status(HttpStatus.UNAUTHORIZED).body(null);
        }
        String apiKey = authorization.split(" ")[1];

        // 构建请求体
        Map<String, Object> payload = new HashMap<>();
        payload.put("question", requestData.getQuery());
        payload.put("dataset_ids", Collections.singletonList(requestData.getKnowledge_id()));
        payload.put("top_k", requestData.getRetrieval_setting().getTop_k());
        payload.put("similarity_threshold", requestData.getRetrieval_setting().getScore_threshold());

        // 构建请求头
        HttpHeaders headers = new HttpHeaders();
        headers.setContentType(MediaType.APPLICATION_JSON);
        headers.set("Authorization", "Bearer " + apiKey);
        HttpEntity<Map<String, Object>> entity = new HttpEntity<>(payload, headers);

        // 发送请求
        RestTemplate restTemplate = new RestTemplate();
        try {
            ResponseEntity<Map> response = restTemplate.exchange(
                    ORIGINAL_API_URL,
                    HttpMethod.POST,
                    entity,
                    Map.class
            );

            if (response.getStatusCode() != HttpStatus.OK) {
                return ResponseEntity.status(response.getStatusCode()).body(null);
            }

            // 处理响应数据
            Map<String, Object> originalData = response.getBody();
            Map<String, Object> data = (Map<String, Object>) originalData.get("data");
            List<Map<String, Object>> chunks = (List<Map<String, Object>>) data.get("chunks");

            List<Map<String, Object>> records = new ArrayList<>();
            if (chunks != null) {
                for (Map<String, Object> chunk : chunks) {
                    Map<String, Object> record = new HashMap<>();
                    record.put("content", chunk.get("content"));
                    record.put("score", chunk.get("similarity"));
                    record.put("title", chunk.getOrDefault("document_keyword", "Unknown Document"));
                    Map<String, Object> metadata = new HashMap<>();
                    metadata.put("document_id", chunk.get("document_id"));
                    record.put("metadata", metadata);
                    records.add(record);
                }
            }

            Map<String, List<Map<String, Object>>> result = new HashMap<>();
            result.put("records", records);
            return ResponseEntity.ok(result);
        } catch (HttpClientErrorException e) {
            return ResponseEntity.status(e.getStatusCode()).body(null);
        }
    }
}

在controller中修改主机和端口,能在这里找到:

完事可以用api工具测试一下这个接口通不通

 

 注意这里请求头要加一个Bearer 然后接上apikey,中间有个空格

三.dify连接ragflow的知识库

1.rag先连接

 

2.新建知识库 

 3.进行召回测试

这里是我运行的结果,完美

 至此结束,撒花

<think>好的,我现在需要解决用户在Dify调用RAGFlow知识库时未返回引用的问题。首先,我应该回忆一下DifyRAGFlow的基本集成方式。根据引用[1],用户提到使用DeepSeek和RAGFlow构建知识库的工作流程,可能涉及API调用或配置参数。可能的问题点在哪里呢? 首先,检查知识库的配置是否正确。比如,RAGFlow是否已经正确上传了文档,并且生成了有效的向量索引。如果知识库本身缺少必要的上下文信息,可能导致返回结果不包含引用,如引用[3]中提到的,知识库缺乏上下文会导致RAG系统返回错误信息。这时候需要确认文档是否处理正确,是否有足够的元数据。 接下来,查看Dify中的RAG配置参数。用户可能在调用时没有正确设置返回引用的参数。例如,是否在API请求中指定了需要返回源文档或引用片段。有些系统默认不返回这些信息,需要显式开启。引用[2]中提到RAGFlow-plus的兼容性问题,可能需要确认版本是否匹配,配置是否同步更新。 另外,权限问题也可能导致引用缺失。确保Dify有权限访问RAGFlow中的知识库,并且相关API密钥或访问令牌正确无误。引用[4]指出大模型的幻觉问题,如果知识库本身数据缺失,也可能影响结果。需要检查知识库内容是否完整,是否有足够的覆盖范围。 日志分析也很重要。查看DifyRAGFlow的日志,确认调用过程中是否有错误信息。比如,API响应是否包含引用字段,或者是否有权限拒绝的记录。根据错误日志调整配置或代码。 最后,如果以上步骤都确认无误,可能需要优化知识库的上下文处理。引用[3]的解决方案提到可以增加上下文信息或引入置信度评分,帮助系统在不确定时正确返回引用。可能需要调整RAGFlow的处理流程,确保在生成答案时带引用来源。 总结可能的解决方案步骤:检查配置、确认参数、验证权限、分析日志、优化知识库上下文。需要逐一排查这些方面,确保每个环节都正确设置,以解决引用缺失的问题。</think>针对Dify调用RAGFlow知识库时未返回引用的问题,以下是分步解决方案: ### 一、检查知识库配置完整性 1. **验证文档处理状态** 确保RAGFlow知识库中的文档已成功完成向量化处理,处理状态显示为$status=completed$。未完成处理的文档无法生成有效引用[^3]。 2. **检查元数据标注** 在RAGFlow的文档管理界面确认每个文档片段是否包含标准元数据字段,例如: $$metadata = \{ "doc_name": "手册.pdf", "page_num": 15 \}$$ 缺失元数据会导致引用信息无法生成[^3] ### 二、调整Dify调用参数 ```python # 示例API调用参数需包含return_reference字段 api_params = { "query": "技术问题", "top_k": 5, "return_reference": True, # 必须显式开启引用返回 "score_threshold": 0.65 # 建议设置置信度阈值 } ``` 通过设置$score_threshold$可过滤低质量结果,避免返回无引用的模糊答案[^4] ### 三、排查系统间通信 1. **API响应验证** 使用Postman测试RAGFlow API响应是否包含`reference`字段: ```json { "answer": "...", "references": [ {"source": "doc001.pdf", "page": "23"}, {"source": "doc004.pdf", "page": "7"} ] } ``` 若API响应本身无引用信息,需检查RAGFlow版本是否支持该功能[^2] 2. **网络策略检查** 确认Dify服务器到RAGFlow的$8000$端口(默认API端口)通信未被防火墙拦截,可通过`telnet ragflow-host 8000`验证连通性 ### 四、实施增强方案 1. **上下文增强配置** 在RAGFlow的预处理配置中增加上下文窗口参数: $$context_window\_size = 1024$$ 该设置可保留更多上下文信息以提高引用关联度[^1] 2. **建立引用兜底机制** 在Dify后处理逻辑中添加异常处理: ```python if not response.get('references'): answer += "\n\n*温馨提示:本次回答未匹配到知识库文档,建议核对查询关键词*" ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值