KNN方法实践

KNN算法易于理解,可以用在归类和回归两种方法上,并且不需要对数据有假设,优点是易于解释,在分类上用到的多,对异常值不敏感,可以去做量化预测信号。

该网站介绍了如何使用sklearn去做KNN模型预测,这个Youtube视频也简单介绍了如何python实现KNN预测:KNN Algorithm - Finding Nearest Neighbors (tutorialspoint.com)Scikit-Learn 8 cross validation 交叉验证1 (机器学习 sklearn 教学教程tutorial) - YouTube

常用的是交叉检验,对K从1到30去找平均score,画图x轴是K,y轴是score,去观察预测是否稳定,分数是否能够保持在较高水平,在量化里是个可以简单尝试的方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值