【时间序列】ARMA与Heteroskedasticity

一般来说,用AR与MA模型就够了,ARMA模型虽然更复杂,可能试用在更多的情境中,但是因为实际测试时容易过拟合,T值不够稳定,使用就是一门艺术了。

Heteroskedasticity(异方差)是导致我们之前的AR或者MA等模型失效的一个风险,异方差会导致AR或MA等模型中T值显著,但实际并不如此,因此在做完模型后,要检查假设是否成立,这是理论上必须要做的事情。实际情况中,就要结合主观判断,是否该时间序列是有异方差的。

把做完AR、MA、ARMA等模型的残差平方,并且去回归,看a1是否显著不等于0,之后就跟AR和MA等模型一样,去看残差Lag的阶数来判定使用ARCH(p)模型。

ARCH模型如果成立的话,也就是说明时间序列有异方差,以前的模型就不适用了,就要用到GLS回归等方法。ARCH起源于英国通货膨胀率的研究,因此在部分宏观经济指标中是可以借鉴使用的,在量化研究方面,用处不大。

越复杂的模型,例如GARCH、IGARCH、GARCH-M等模型其实会让模型在样本内过拟合,用最简单的是最好的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值