【PLL】ISSCC 2024 Tutorial: Calibration Techniques in PLLs

1. 数字辅助模拟电路

为什么要辅助,或替换模拟电路?

  • 利用CMOS管子尺寸缩小,降低功耗 减小面积
  • 校正模拟电路的 非线性行为失配

数字辅助的好处:

  • 简化模拟电路设计
  • 提高能源效率,提高准确度

2. 锁相环基础

2.1 概述

锁相环是一个【频率跟随器】(Frequency Follower):输出频率跟随输入频率

 稳定状态时,输入信号 in(t)输出信号 out(t) 有 固定的相位偏移

2.1.1 整数N分频

  • 整数N分频综合器:分频器反馈回路
  • 输出频率= 参考时钟频率(fref) * 分频比(N)
  • PLL相当于一个【频率DAC】:调节 N,输出频率不同

2.1.2 分数N分频

  • ΔΣ modulator把分频器控制信号MC打散,使其平均值为分数分频比:输出频率=(N+m)*Fref
  • 相当于一个【ΔΣ-频率-DAC】

2.2 应用

  • 时钟倍增
    • 固定频率倍增系数
    • e.g. 用于A/D转换器的时钟发生器
  • 频率综合器
    • 可编程倍频系数
    • e.g. 无线收发机的本振
      • QAM应用于毫米波需要本振低相噪
      • e.g. 集成抖动 PN <-36 dBc,或 据对抖动 < 90fs (5G NR at 28 GHz)
  • 频移抑制
    • 将内部时钟与I/O时钟对齐
  • 时钟恢复
    • 从传入数据流中提取时钟频率
  • FM调制/解调

2.3 实现

2.3.1 电荷泵模拟锁相环

  • 在工业中广泛应用:简单,可靠
  • 模拟滤波器:占用很大面积;容易受泄漏电流影响
  • 电荷泵:存在失配;限制输出电阻;增加噪声
  • 面积、功耗、设计成本不能随着CMOS工艺节点进步而减小

2.3.2 基于TDC的数字锁相环

时间数字转换器:

 数字振荡器:

数字滤波器:

  • 数字滤波器代替 面积大的模拟滤波器
  • 没有电荷泵(噪声、功率、面积较小)
  • 更容易校准
  • TDC和DCO引入量化噪声和截断噪声 
ΔΣ噪声消除

  • ΔΣ噪声可以倍准确的完全消除
  • 需要增益校准 H(z)匹配分频器和TDC增益
  • 如果 a_0=K_{tdc}*T_{v0},则可以完全消除

3. 自适应滤波器基础

  • 调制滤波器系数,以估计输入信号 x[k] 中的未知量 d[k]
  • 如果 x[k]变化,则自适应算法更新滤波器系数

3.1 线性估计案例:

3.2 最陡下降算法:

  • 均方误差J(w)=E{\{|e|^2\}}是经典的成本函数
  • 其全局最小值的搜索方向与 J(w) 的梯度相反(即,沿着成本值递减的路径)
  • J(w) 的梯度取决于 x[k]、d[k] 的统计量

3.3 收敛与稳定性:

  • 收敛速度却决于步长 μ
  • 稳定性要求 μ 是正的和有限的。

3.4 随机梯度算法:LMS 案例

计算成本为 2 个乘法器和 2 个加法器(假设μ是2的幂次方)

3.5 自适应滤波器应用的类别

  • 干扰消除
  • 逆向建模
    • e.g 通道均衡
  • 系统识别
    • e.g. 信道估计、回声消除
  • 线性预测
    • e.g. 预测编码、线路增强

3.5.1 干扰消除

  • 所需信号 s[k] 被噪声或干扰 n[k] 破坏
  • 滤波器根据 n’[k](与 n[k] 相关)估计 s[k]

3.5.2 逆向建模

  • 滤波器成为未知系统的逆
  • 延迟使系统具有因果性
  • 典型应用:通道均衡

3.5.3 系统识别

  • 滤波器模仿未知系统的行为
  • 两个系统均由相同的输入x[k]
  • 典型应用:信道估计、回声消除

3.5.4 线性预测

  • 滤波器使用过去的样本预测输入信号的未来值
  • 典型应用:预测编码、线路增强

4. 校准案例

4.1 PLL量化噪声消除(干扰消除)

4.1.1 数字锁相环 ΔΣ噪声消除

  • 在 TDC 输出处执行干扰消除(数字后处理)
  • 量化误差q[k]的增益 a0 被校准

LMS环路

  • 增益 a0 收敛到 q[k]·e'[k]的平均值
  • 自适应滤波器估计分频器/TDC级联的增益

TDC非线性带来的问题

  • TDC非线性导致 量化噪声不能完美消除
  • 增益 a0 收敛到使均方误差最小的值

  • 相位插值减小TDC范围 --> 提高TDC线性度,节省功耗
  • 相位插值失配导致杂散

  • 通过估计每个 PI 相位的单个 hj 来纠正相位失配

4.1.2 DTC辅助 Bang-Bang数字PLL

  • ΔΣ 量化误差通过数字/时间转换器 (DTC) 消除
  • 增益a0在DTC(数字预处理)的输入处校准
  • 校准可以通过单增益 LMS 完成

  • 分段 DTC 中,可以通过 LMS 环路估计多个增益
  • 多路径 LMS 校准可以替代单增益 LMS 来校正 DTC 非线性

4.1.3 现代 DTC辅助数字PLL

4.1.4 DTC辅助采用PLL

  • LMS 的 DTC 辅助已扩展到模拟 PLL
  • 采样相位检测器 (SPD) 减少后续块的噪声影响

4.2 PLL自动带宽控制(系统识别)

4.2.1 环路增益敏感度

  • 开环增益取决于通过BPD增益的抖动
  • BPD和VCO增益对PVT变化都很敏感
  • 系统带宽对PVT变化很敏感

4.2.2 环路增益归一化

  • DCO控制信号w[k]误差信号e[k],是与G成比例
  • 训练序列q[k]被加入DCO调谐w[k]

工作原理:

  • 具有自适应增益g[k]的数字积分器模仿环路行为
  • LMS设置g[k],使e[k]-\hat e[k]为零

4.2.3 PLL自动带宽控制

  • ΔΣ DCO量化噪声q[k]训练自适应滤波器
  • 当环路误差e[k]除以估计增益g[k]时,开环增益现在与模拟参数无关

4.3 PLL 线性FM调制(逆向建模)

4.3.1 直接FM调制

  • 优点:低功耗、高分辨率、线性
  • 缺点:扫频速度慢,具有分数杂散

4.3.2 两点调制

  • 实现PLL快速直接FM调制
  • 需要增益校准

两点调制数学模型

增益不平衡

相关性 c[k]=E{e[k}·n[k]}增益不平衡 ΔK 成比例

增益校准

LMS使ĉ[k]为零,从而使得增益不平衡 ΔK为零

DCO非线性

  • 增益不平衡εK 导致调制泄漏到环路中
  • 仅当调制在PLL BW范围内时,PLL才能校正增益不平衡
  • 环路不校正带外频率误差

解决方法:自适应 数字预失真 算法

DPD减轻了DCO INL和DCO不匹配

ISSCC2015 - Digest SCourse 01 - A Roadmap to Lower Supply Voltages – A System Perspectiv e.pdf SCourse 02 - Designing Ultra-Low-Voltage Analog and Mixed Signal Circu its.pdf SCourse 03 - ADC Design in scaled Technologies.pdf SCourse 04 - Ultra Low Voltage RF Circuits and Transceivers.pdf Session 01 - Plenary.pdf Session 02 - RF TX-RX Design Techniques.pdf Session 03 - Ultra-High-Speed Wireline Transceivers and Energy-Efficie nt Links.pdf Session 04 - Processors..pdf Session 05 - Analog Techniques.pdf Session 06 - Image Sensors and Displays.pdf Session 07 - Non-Volatile Memory Solutions.pdf Session 08 - Low-Power Digital Techniques.pdf Session 09 - High-Performance Wireless.pdf Session 10 - Advanced Wireline Techniques and PLLs.pdf Session 11 - Sensors and Imagers for Life Sciences.pdf Session 12 - Inductor-Based Power Conversion.pdf Session 13 - Energy-Efficient RF Systems.pdf Session 14 - Digital PLLs and SoC Building Blocks.pdf Session 15 - Data-Converter Techniques.pdf Session 16 - Emerging Technologies Enabling Next-Generation System.pdf Session 17 - Embedded Memory and DRAM IO.pdf Session 18 - SoCs for Mobile Vision, Sensing and Communications.pdf Session 19 - Advanced Wireless Techniques.pdf Session 20 - Energy Harvesting and SC Power Conversion.pdf Session 21 - Innovative Personalized Biomedical Systems.pdf Session 22 - High-Speed Optical Links.pdf Session 23 - Low-Power SoCs.pdf Session 24 - Secure, Efficient Circuits for IoT.pdf Session 25 - RF Frequency Generation from GHz to THz.pdf Session 26 - Nyquist-Rate Converters.pdf Session 27 - Physical Sensors.pdf Tutorial 01 - Fundamentals of Modern RF Receivers.pdf Tutorial 02 - Basics of DRAM Interfaces.pdf Tutorial 03 - Ultra-Low-Power Wireless Systems.pdf Tutorial 04 - Low-Power Near-threshold Design.pdf Tutorial 05 - High-Speed Current-Steering DACs.pdf Tutorial 06 - Clock and Data Recovery Architectures and Circuits.pdf Tutorial 07 - Basics of Many-Core Processors.pdf Tutorial 08 - Analog Techniques for Na
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值