Python机器学习实战:实现与优化遗传算法
1. 背景介绍
1.1 问题的由来
在现实世界中,我们经常会遇到各种优化问题,例如旅行商问题、作业调度问题、投资组合优化等。这些问题通常具有非线性、多峰值、高维等特点,使得传统的数学方法和确定性算法难以高效求解。遗传算法(Genetic Algorithm, GA)作为一种启发式搜索优化算法,模拟生物进化过程,具有全局寻优、鲁棒性强等优点,被广泛应用于各个领域的优化问题求解。
1.2 研究现状
遗传算法最早由约翰·霍兰德(John Holland)于20世纪70年代在密歇根大学提出,旨在模拟生物进化过程,用于解决复杂的优化问题。自那以后,遗传算法在理论和应用上都取得了长足进展,成为解决实际问题的有力工具。目前,遗传算法已广泛应用于机器学习、计算机科学、工程设计、生物信息学、经济金融等诸多领域。
1.3 研究意义
遗传算法作为一种通用的优化算法,具有以下优点:
- 全局优化能力强:遗传算法通过种群并行搜索,能够有效避免陷入局部最优解。
- 鲁棒性好:遗传算法不需要太多先验知识,对初始值不敏感,能够适应各种环境。
- 易于并行处理:遗传算法的种群特性使其天然适合并行计算。
- 易编码:遗传算法只需将问题编码为适应度函数,无