NNDL 作业一

一、简答(1.写出定义,2.描述自己对定义的理解) 

1、人工智能

    定义:

      人工智能就是用人工方法在机器(计算机)上实现的智能,或称机器智能,即是研究如何用计算机来表示和执行人类的智能活动,以模拟人脑所从事的推理、学习、思考和规划等思维活动,并解决需要人类的智力才能处理的复杂问题,如医疗诊断、管理决策、下棋和自然语言理解等。

     我认为人工智能是实现机器的智能化,是模拟、延伸和扩展人的智能理论。计算机可以像人一样去学习,比如通过学习大量的数据,可以自主写诗歌、下象棋等。通过了解发现,人工智能目前分为两个派别,一种是强人工智能,这种人工智能是具有独立意识的,可以像人一样去思考。另一种是若人工智能,是具有特定功能的人工智能,我认为人工智能不能具有独立的意识,人工智能一旦拥有自主意识,很可能会修改自己的程序设定,可能危及人类安全。人工智能的长期目标是实现人类水平的机器智能化。

2、机器学习

     定义:

      机器学习是一门从数据中研究算法的科学学科。机器学习直白来讲,是根据已有的数据,进行算法选择,并基于算法和数据构建模型,最终对未来进行预测 。

      我认为机器学习就是给出指定的数据集和要求,然后根据要求判断是回归还是分类,接着根据有无标签选择有/无监督学习的模式,然后对数据进行预处理,再选择某个特定的模型去求解,最终对未来进行预测输出并给出模型评估结果,比如手写字识别中会给出正确率等。

3、深度学习

       定义:

          深度学习是人工智能领域的一个分支,它利用多层神经网络来进行特征提取和模式识别。通过输入大量的数据和相应的标签,深度学习可以自动分析出数据中的规律和模式,并对新数据进行预测和分类。

          我认为深度学习是机器学习的一个子领域,它主要就是利用神经网络去处理数据,核心思想就是模拟人脑神经元,通过逐层的计算和学习,从而实现对复杂数据结构的分析。它的步骤是先定义一堆函数,然后通过神经网络去不断更新参数,并且不断去评估函数,最后选择最优的那个函数。

4、人工智能、机器学习、深度学习三者之间的关系

      定义:

           为了赋予计算机以人类的理解能力与逻辑思维,诞生了人工智能(Artificial Intelligence, Al)这一学科。在实现人工智能的众多算法中,机器学习是发展较为快速的一支。机器学习的思想是让机器自动地从大量的数据中学习出规律,并利用该规律对未知的数据做出预测。在机器学习的算法中,深度学习是特指利用深度神经网络的结构完成训练和预测的算法。
           我认为人工智能是研究如何让机器实现人的智能化,机器学习是人工智能的一个分支,用来对数据进行处理然后对结果进行预测,深度学习是机器学习的一个分支,主要就是机器学习的神经网络的一个深入,通过输入大量的数据和相应的标签,可以自动分析出数据中的规律和模式,并对新数据进行预测和分类。之间的关系应该是包含关系,如下图:

5、人工智能的流派

1、符号主义:

    定义:

        认为人工智能源于数理逻辑。符号主义是一种人工智能研究方法,旨在使用符号处理来模拟人类的认知和智能过程,通过建立符号系统和规则来处理符号,在计算机中实现智能行为。符号主义的核心观点是,人的思维可以通过符号和规则的组合来描述和解释。因此我们可以用计算机来模拟人的智能行为,即用计算机的符号操作来模拟人的认知过程后来又发展了启发式算法->专家系统->知识工程理论与技术。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表任务有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。

主要观点:

  1. 人类认知和思维的基本单元是符号
  2. 计算机也是一个物理符号系统
  3. 认知过程就是在符号表示上的一种运算

      我认为符号主义有点类似于离散数学里的启发式推导过程,但是符号主义也存在一些挑战和限制。首先,符号主义在处理模糊和不确定性问题上面临困难,因为符号只能表示离散的概念,难以处理模糊和连续的情况。其次,符号主义的方法往往需要对问题进行精确地规范和建模,这对于复杂和实时的问题来说是具有挑战性的。此外,符号主义忽视了人类的感知和经验,无法完全模拟人类的智能和行为。符号主义作为一种经典方法,对于推理、知识表示和智能系统的发展仍然具有重要的影响和启发作用。

 2、连接主义

        定义:

          连接主义是一种以神经网络为基础的人工智能研究方法。连接主义的核心观点是,智能行为可以通过许多简单的神经元(单位)之间的连接和交互来实现智能的学习和决策。在连接主义中,神经网络模型被用来模拟人脑中神经元的工作原理。神经网络由一个或多个层次组成,每个层次包含许多神经元。神经网络通过学习和调整连接权重来逐步提高其对输入数据的解释能力和预测能力。

          我认为连接主义的方法就是模拟人脑的神经网络结构和工作原理,建立大量的神经元,通过大量的数据训练,使得神经网络可以从数据中学习并提取特征和模式。连接主义在处理复杂、模糊和不确定性问题上具有一定的优势,因为它能够从数据中自适应地获取知识和信息。但是连接主义取得良好的训练成果的前提就是选择了正确的训练模型。

3、行为主义

        定义:

         行为主义是一种心理学理论,认为心理过程和意识是无法直接观测和测量的,而应该通过观察和分析个体的可观察行为来研究和解释心理现象。行为主义强调外部可见的行为反应,将行为看作是对环境刺激做出的有机的反应。

      我认为行为主义是智能取决于感知和行为,取决于对外界复杂环境的适应,而不是表示和推理,它通过对刺激和反应之间的关联进行研究,探索学习和行为变化的规律。

6、特征工程

      定义:特征工程是指对原始数据进行预处理和转换,以提取出对机器学习算法建模有用的特征的过程。主要有7个过程,1、数据清洗 2、特征选择 3、特征变换  4、特征构造  5、特征编码  6、特征降维  7、特征重要性评估

         我认为特征工程就是和数据的预处理过程很像,都需要处理缺失值,保证数据的完整性。同样需要对数据进行特征变换、降维等。所以,特征工程应该是最大限度地从原始数据中提取特征以供算法和模型使用,以此来提高结果的正确率。

7、表示学习

       定义:为了提高机器学习系统的准确率,我们就需要将输入信息转换为有效的特征,或者更一般性称为表示(Representation)。如果有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就是可以叫做表示学习(Representation Learning)。

        我认为表示学习是通过学习数据的表示形式来解决问题,通过自动学习数据的表示形式,使得机器可以更好地理解和处理数据,提高机器的学习性能和泛化能力。

8、贡献度分配

    定义:贡献度分配是指在一个项目中,如何公平地分配组件的贡献度,以便进行奖励或资源分配。这个问题涉及到如何衡量组件的贡献度、如何评估贡献度的公正性和有效性,以及如何确保分配结果能够激励成员 积极参与团队活动。

     我认为贡献度分配是一个多维度的问题。首先,需要明确不同的贡献度指标,例如代码编写量、算法设计、实验结果分析等。其次,需要确定各个贡献指标的权重,便于后续综合考虑不同贡献的重要性。

9、独热码

      定义:独热码(One-Hot Encoding)是一种常用的特征编码方法,它将离散的分类变量转化成一个由0和1组成的向量。独热码的定义是将一个类别型特征转化为一个只有0和1组成的向量,其中只有对应类别的位置上的元素为1,其他位置上元素都为0。独热码的原理是将每个类别映射到一个唯一的整数值,然后将整数值转化为一个二进制向量。

      我认为它可以用于将离散的分类变量转化为机器学习算法可以处理的输入格式。在使用分类变量作为特征时,只有对应类别的位置上的元素为1,其他位置上元素都为0独热码可以保持类别之间的无序关系,同时避免了数值大小的影响,使得模型可以更好地理解和利用这些特征。

10、word2vec

      定义:word2vec是一种用于将词语表示为连续向量空间中的向量的算法。它是一种浅层的神经网络模型,通过学习大量文本数据中的词语上下文关系,将词语转化为具有语义信息的稠密向量表示。word2vec算法主要有两种模型:连续词袋模型(CBOW)和Skip-gram模型。核心思想是“上下文相似性”,即将具有相似上下文的词语映射到相似的向量空间位置。通过训练得到的词向量,可以计算词语之间的余弦相似度,从而进行词语的比较、聚类或建立语义关系。

11、神经网络

      定义:神经网络是一种基于人工神经元模型的计算模型,它是一种模拟生物神经系统中神经元之间相互连接的网络结构。神经网络通过学习和调整连接权重,可以从输入数据中提取特征,并通过层层传递信息,最终输出结果。在神经网络中,神经元是网络的基本单元,每个神经元接收多个输入信号,并通过激活函数进行处理,然后将输出信号传递给下一层神经元或作为最终的输出结果。神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。输入层接收外部输入数据,隐藏层用于提取输入数据的特征,输出层产生最终的输出结果。神经网络的学习过程通常通过反向传播算法来实现,它通过比较网络的预测输出和实际输出之间的误差,并根据误差来调整网络的连接权重,使得网络的输出逐渐接近期望的目标。通过反复迭代调整权重,神经网络可以逐渐学习数据的特征和模式,从而提高其预测和分类的准确性。

     我认为:神经网络是一种模仿人脑神经系统的计算模型,它能够通过学习和调整连接权重来自动识别和提取输入数据中的特征。通过神经网络的学习和训练,我们可以使其具备更好的泛化能力,能够在未见过的数据上进行准确的预测和分类。

12、端到端学习

       定义:端到端学习是一种机器学习方法,它通过将整个系统的输入和输出直接映射起来,从而实现从原始输入到最终输出的端到端的学习和优化。简而言之,端到端学习直接从输入到输出进行学习,而不需要手动设计和引入中间步骤或特征工程。

      我认为端到端学习根据定义我猜测是从输入到输出应该是具有某种关系,类似于x和f(x)之间的那种映射关系,给定一个输入,可以直接得到输出,不需要中间的步骤。

二、心得体会

1、这次作业里面1--5、11都是学过的,里面有些内容有些已经模糊了,通过网上搜找的方法,重新学会了

2、6-8这几个乍一看名字貌似没有学过,但是经过网上的搜集资料,发现学过但是当时没有关注哪些知识点的名称。以后需要加强知识点之间的连接和整理。

3、9-10和12应该是确实没有学过,靠从网上搜集资料,整理学习得到。

4、这次作业感觉自己有很多不足,对一些知识点的理解不够全面。

5、三大学派,导论时学过,有些知识点可以回忆起来,但是这次作业发现对行为主义的认识不够全面。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值