虚拟环境的创建以及labelme和labelImg的使用教程

目录

前言

Anaconda创建虚拟环境

win 11系统

Ubuntu系统

Labelme的使用教程

1、激活环境

2、下载指定版本

3、创立图片文件夹

4、使用labelme标注

5、使用脚本将json转为png

LabelImg的使用教程

1、LabelImg的介绍

2、LabelImg的安装 

3、LabelImg的使用

4、常常使用的快捷键

结语


前言

在写作这篇博客时,我本来打算将虚拟环境的创建和标注软件的使用分开讲解。然而,在完成虚拟环境的创建部分后,我发现它的字数似乎有些不足以独立成篇。因此,我决定将这两部分内容放在一起,以便读者更全面地了解这两个主题的关联性。

在本篇博客中,我将简单介绍如何在Win11和Ubuntu系统上创建虚拟环境,以及如何使用这两款(labelme和labelimg)标注软件进行数据标注。我不仅会介绍它们的下载和使用流程,还会分享我平时标注时所用的一些案例和快捷键。最后,我还会分享一个将JSON转换成PNG格式的脚本,希望对你的标注工作有所帮助。

我相信这篇教程能够帮助你解决许多标注相关的问题。请继续阅读,了解更多!

Anaconda创建虚拟环境

win 11系统

我的是win11系统,可以点击搜索。或者是按下win+s键打开。

在里面输入Anaconda Prompt

初始是这样的:

(base) C:\Users\honor>

(base)是一个基础的环境,在这里我们先查看我们的虚拟环境

输入conda env list

除了base,其他都是我创建的虚拟环境,当然有的一直没有用。

然后我们需要创建自己的环境:conda create -n env_name python=3.7 

env-name就是环境的名称,可随意更改,python=3.7是环境安装的python版本,也可按需更改,高版本并不好,常常会出现一些bug,我最爱用的还是3.7及其下的版本。

  • 激活环境:activate env_name,然后你就可以根据需要pip下载包了
  • 退出环境:deactivate,我通常会省去这步,直接activate 其他的虚拟环境名,这样方便转换到其他虚拟环境
  • 删除虚拟环境:conda remove -n env_name --all

Ubuntu系统

当然啦,由于我们实验室有工作站,是Ubuntu系统的,情况类似,只是在激活环境和退出环境时,前面要加上source

  • 激活环境:source activate env_name
  • 退出环境:source deactivate
     

Labelme的使用教程

首先,要安装好虚拟环境,如上所示,我的虚拟环境就叫labelme,专门使用它

1、激活环境

输入:activate labelme

2、下载指定版本

在该环境下,输入命令行

pip install labelme==3.16.7

据前辈所说,有些版本的labelme会发生错误,具体的错误为:Too many dimensions:3 > 2,

总之,这个下就行了。由于我的已经安装好了,所以这里不展示了。

3、创立图片文件夹

在一个文件下,我希望你有以下三个文件:

  • pic
  • json
  • lab

不管你的命名的是什么,搞清楚它们的作用就行了,pic是你需要标注的图片存放位置,json是你标注后生成的文件,lab是通过脚本将json文件转化为png格式的图片。

内容展示

4、使用labelme标注

激活环境后,直接输入labelme。

(labelme) C:\Users\honor>labelme

点击右边导航栏中顺数第二个,即可打开你需要标注的图片所在的文件夹进行批量标注。

我拿网上的数据集CrackForest,做为示范。

选中你要标记的图片,点击Create Polygons(顺数第七个)。

 

原始图片是这样的,在标注时一定要尽可能的放大最大去标注,你的预测效果与你的标注息息相关。如下图所示

记住一定要闭环,最后一个点一定要与起点相接。这里假设我们完成后,他就会出现这样的弹窗。

在这里的crack是我们自己输入的,输入一次后会默认,当然多个物体标注时,在下面的白色画布部分会有你想要分类的记录。

如果你觉得你自己有些点标注的地方不是很如意,可以点击Edit Ploygons(顺数第八个)。当你触碰到点时对应的点会变红变大,如果你移动到了中间的红色区域,你可以对其进行拖拽,对不满意的地方进行修改,这是其中的一个修改方法。

有些快捷键是你需要掌握的:

  • Ctrl+z:撤回上一个标注的点,不要一直按,它可能会同时将你已经标注好的区域全部撤回。
  • Ctrl+鼠标滚轮:对图片进行放大缩小
  • Alt+鼠标滚轮:左右横向移动
  • 鼠标滚轮:上下移动
  • Ctrl+s:保存

完成一张图后,一定一定要保存呀,位置就在json文件夹当中,保存成功后,右下角的File list对应图片的位置会有蓝底白色的小勾。

5、使用脚本将json转为png

Json2Image.py

import base64
import json
import os
import os.path as osp

import numpy as np
import PIL.Image
from labelme import utils

if __name__ == '__main__':
    jpgs_path = "E:\Deeplearning\Road_Detect_Project\THREE_ZJR\zjr"
    pngs_path = "E:\Deeplearning\Road_Detect_Project\THREE_ZJR\png"
    # classes     = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    # classes     = ["_background_","cat","dog"]
    classes = ["_background_", "crack"]

    count = os.listdir("E:\Deeplearning\Road_Detect_Project\THREE_ZJR\json")
    for i in range(0, len(count)):
        path = os.path.join("E:\Deeplearning\Road_Detect_Project\THREE_ZJR\json", count[i])
        print(count[i])

        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path), strict=False)

            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')

            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value

            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))

            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

            PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0] + '.jpg'))

            new = np.zeros([np.shape(img)[0], np.shape(img)[1]])
            for name in label_names:
                index_json = label_names.index(name)
                index_all = classes.index(name)
                new = new + index_all * (np.array(lbl) == index_json)

            utils.lblsave(osp.join(pngs_path, count[i].split(".")[0] + '.png'), new)
            print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

在这里面,凡是出现了路径都要改,对应的部分一定要分清楚,然后所需要分的类型也要修改,也就是classes变量。接着点击运行就可以了。我的建议呢就是每个工程文件下都留有这个py文件,有好处的。

LabelImg的使用教程

这里我建议重新创建一个环境,虚拟环境的创建方法参照文章开头即可。

1、LabelImg的介绍

labelimg与labelme一样是用于标注图像的软件,用Python编写并使用Qt作为其ui图形界面。下面三种是它提供可标注的格式:

  •  VOC标签格式,保存为xml文件。
  •  YOLO标签格式,保存为txt文件。
  •  createML标签格式,保存为json格式。

2、LabelImg的安装 

按照下面的流程进行安装即可:

pip install PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install pyqt5-tools -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install labelImg -i https://pypi.tuna.tsinghua.edu.cn/simple/

这里均用的都是国内的清华镜像源,下载速度比较快。 

3、LabelImg的使用

(labelimg) C:\Users\honor>labelImg

这个界面还真是与labelme相似,这里要注意的是后面的是大写的字母“i”。

步骤一:

        在左方的导航栏中,打开需要标注的图片目录。(由上至下第二个)

步骤二:

        快捷键Ctrl+R,选择默认保存途径。

步骤三:

        首先,你需要对你标注的对象进行格式的选择,标注模式分为VOC和YOLO两种,两种模式下生成的标注文件分别为.xml文件和.txt文件。

        绘制边界框,点击“Creat RectBox”后,选择合适的左上角,然后拖动,并对目标进行标注。

 

4、常常使用的快捷键

Ctrl + L更改线框颜色

Ctrl + D复制框

Ctrl + H隐藏所有的框

Ctrl + A显示所有的框

Ctrl + shift + F图像适应宽度

结语

2023-02-16 创作的是"虚拟环境的创建以及labelme的使用教程";

2023-03-13 新添labelimg的教程。

在人工智能的时代,标注数据已经成为了推动技术进步的重要一环。标注软件的使用对于数据标注的效率和准确性有着决定性的影响。我们需要意识到,标注不仅仅是一项重复性的劳动,更是一项需要技能和专业知识的工作。因此,我们需要持续地学习和探索,提高自身的标注能力。在这个过程中,labelme和labelimg这两款优秀的标注软件无疑是不可或缺的工具。

同时,我们也需要认识到,标注不仅仅是一种技能,更是一种责任。我们的标注数据将会被用于训练和评估各种人工智能模型。因此,我们需要严谨地对待每一项标注工作,确保数据的质量和可靠性。

最后,我想说,标注是一项具有挑战性和成就感的工作。每一次标注的进步和提高,都是对自己能力的认可和鼓励。让我们一起努力,探索标注的无限可能!(哈哈,说的有点大了)

### 创建并激活虚拟环境 为了确保安装过程的安全性独立性,在Python虚拟环境中安装`labelimg`是一个明智的选择。创建名为`py3_labelimg`的新虚拟环境,并通过执行命令`source /env/py3_labelimg/bin/activate`来激活此环境[^1]。 ```bash python3 -m venv py3_labelimg source py3_labelimg/bin/activate ``` 一旦成功激活了指定的虚拟环境,所有的包都将被安装在这个隔离的空间内,不会影响系统的全局设置或其他项目依赖项。 ### 安装LabelImg 对于`labelimg`的具体安装方法有多种选择。考虑到不同版本间的兼容性问题,推荐采用清华源作为镜像加速下载速度的同时也提高了成功率: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple labelimg ``` 这条指令不仅指定了国内更快捷的软件仓库地址,还能够有效解决因网络原因造成的安装失败情况[^2]。 值得注意的是,由于`labelimg`可能存在的低版本特性,建议在Python 3.8环境下完成上述操作以获得最佳体验支持效果。然而,如果遇到任何不兼容的问题,则可以考虑回退至更稳定的Python 3.7版本进行尝试[^4]。 ### 使用LabelImg进行图像标注 当一切准备就绪之后,可以通过运行以下命令启动`labelimg`工具来进行实际的数据集构建工作: ```bash python labelImg.py [IMAGE_PATH] [PRE-DEFINED_CLASS_FILE] ``` 这里的路径参数用于指示待处理图片所在的目录位置以及预定义类别列表的位置。按照Pascal VOC标准格式组织数据集结构有助于后续模型训练阶段的工作开展得更加顺利[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天是冰红茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值