目录
前言
在写作这篇博客时,我本来打算将虚拟环境的创建和标注软件的使用分开讲解。然而,在完成虚拟环境的创建部分后,我发现它的字数似乎有些不足以独立成篇。因此,我决定将这两部分内容放在一起,以便读者更全面地了解这两个主题的关联性。
在本篇博客中,我将简单介绍如何在Win11和Ubuntu系统上创建虚拟环境,以及如何使用这两款(labelme和labelimg)标注软件进行数据标注。我不仅会介绍它们的下载和使用流程,还会分享我平时标注时所用的一些案例和快捷键。最后,我还会分享一个将JSON转换成PNG格式的脚本,希望对你的标注工作有所帮助。
我相信这篇教程能够帮助你解决许多标注相关的问题。请继续阅读,了解更多!
Anaconda创建虚拟环境
win 11系统
我的是win11系统,可以点击搜索。或者是按下win+s键打开。
在里面输入Anaconda Prompt
初始是这样的:
(base) C:\Users\honor>
(base)是一个基础的环境,在这里我们先查看我们的虚拟环境
输入conda env list
除了base,其他都是我创建的虚拟环境,当然有的一直没有用。
然后我们需要创建自己的环境:conda create -n env_name python=3.7
env-name就是环境的名称,可随意更改,python=3.7是环境安装的python版本,也可按需更改,高版本并不好,常常会出现一些bug,我最爱用的还是3.7及其下的版本。
- 激活环境:activate env_name,然后你就可以根据需要pip下载包了
- 退出环境:deactivate,我通常会省去这步,直接activate 其他的虚拟环境名,这样方便转换到其他虚拟环境
- 删除虚拟环境:conda remove -n env_name --all
Ubuntu系统
当然啦,由于我们实验室有工作站,是Ubuntu系统的,情况类似,只是在激活环境和退出环境时,前面要加上source
- 激活环境:source activate env_name
- 退出环境:source deactivate
Labelme的使用教程
首先,要安装好虚拟环境,如上所示,我的虚拟环境就叫labelme,专门使用它
1、激活环境
输入:activate labelme
2、下载指定版本
在该环境下,输入命令行
pip install labelme==3.16.7
据前辈所说,有些版本的labelme会发生错误,具体的错误为:Too many dimensions:3 > 2,
总之,这个下就行了。由于我的已经安装好了,所以这里不展示了。
3、创立图片文件夹
在一个文件下,我希望你有以下三个文件:
- pic
- json
- lab
不管你的命名的是什么,搞清楚它们的作用就行了,pic是你需要标注的图片存放位置,json是你标注后生成的文件,lab是通过脚本将json文件转化为png格式的图片。

4、使用labelme标注
激活环境后,直接输入labelme。
(labelme) C:\Users\honor>labelme
点击右边导航栏中顺数第二个,即可打开你需要标注的图片所在的文件夹进行批量标注。
我拿网上的数据集CrackForest,做为示范。
选中你要标记的图片,点击Create Polygons(顺数第七个)。
原始图片是这样的,在标注时一定要尽可能的放大最大去标注,你的预测效果与你的标注息息相关。如下图所示
记住一定要闭环,最后一个点一定要与起点相接。这里假设我们完成后,他就会出现这样的弹窗。
在这里的crack是我们自己输入的,输入一次后会默认,当然多个物体标注时,在下面的白色画布部分会有你想要分类的记录。
如果你觉得你自己有些点标注的地方不是很如意,可以点击Edit Ploygons(顺数第八个)。当你触碰到点时对应的点会变红变大,如果你移动到了中间的红色区域,你可以对其进行拖拽,对不满意的地方进行修改,这是其中的一个修改方法。
有些快捷键是你需要掌握的:
- Ctrl+z:撤回上一个标注的点,不要一直按,它可能会同时将你已经标注好的区域全部撤回。
- Ctrl+鼠标滚轮:对图片进行放大缩小
- Alt+鼠标滚轮:左右横向移动
- 鼠标滚轮:上下移动
- Ctrl+s:保存
完成一张图后,一定一定要保存呀,位置就在json文件夹当中,保存成功后,右下角的File list对应图片的位置会有蓝底白色的小勾。
5、使用脚本将json转为png
Json2Image.py
import base64
import json
import os
import os.path as osp
import numpy as np
import PIL.Image
from labelme import utils
if __name__ == '__main__':
jpgs_path = "E:\Deeplearning\Road_Detect_Project\THREE_ZJR\zjr"
pngs_path = "E:\Deeplearning\Road_Detect_Project\THREE_ZJR\png"
# classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# classes = ["_background_","cat","dog"]
classes = ["_background_", "crack"]
count = os.listdir("E:\Deeplearning\Road_Detect_Project\THREE_ZJR\json")
for i in range(0, len(count)):
path = os.path.join("E:\Deeplearning\Road_Detect_Project\THREE_ZJR\json", count[i])
print(count[i])
if os.path.isfile(path) and path.endswith('json'):
data = json.load(open(path), strict=False)
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
# label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values)))
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0] + '.jpg'))
new = np.zeros([np.shape(img)[0], np.shape(img)[1]])
for name in label_names:
index_json = label_names.index(name)
index_all = classes.index(name)
new = new + index_all * (np.array(lbl) == index_json)
utils.lblsave(osp.join(pngs_path, count[i].split(".")[0] + '.png'), new)
print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')
在这里面,凡是出现了路径都要改,对应的部分一定要分清楚,然后所需要分的类型也要修改,也就是classes变量。接着点击运行就可以了。我的建议呢就是每个工程文件下都留有这个py文件,有好处的。
LabelImg的使用教程
这里我建议重新创建一个环境,虚拟环境的创建方法参照文章开头即可。
1、LabelImg的介绍
labelimg与labelme一样是用于标注图像的软件,用Python编写并使用Qt作为其ui图形界面。下面三种是它提供可标注的格式:
- VOC标签格式,保存为xml文件。
- YOLO标签格式,保存为txt文件。
- createML标签格式,保存为json格式。
2、LabelImg的安装
按照下面的流程进行安装即可:
pip install PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install pyqt5-tools -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install labelImg -i https://pypi.tuna.tsinghua.edu.cn/simple/
这里均用的都是国内的清华镜像源,下载速度比较快。
3、LabelImg的使用
(labelimg) C:\Users\honor>labelImg
这个界面还真是与labelme相似,这里要注意的是后面的是大写的字母“i”。
步骤一:
在左方的导航栏中,打开需要标注的图片目录。(由上至下第二个)
步骤二:
快捷键Ctrl+R,选择默认保存途径。
步骤三:
首先,你需要对你标注的对象进行格式的选择,标注模式分为VOC和YOLO两种,两种模式下生成的标注文件分别为.xml文件和.txt文件。
绘制边界框,点击“Creat RectBox”后,选择合适的左上角,然后拖动,并对目标进行标注。
4、常常使用的快捷键
Ctrl + L更改线框颜色
Ctrl + D复制框
Ctrl + H隐藏所有的框
Ctrl + A显示所有的框
Ctrl + shift + F图像适应宽度
结语
2023-02-16 创作的是"虚拟环境的创建以及labelme的使用教程";
2023-03-13 新添labelimg的教程。
在人工智能的时代,标注数据已经成为了推动技术进步的重要一环。标注软件的使用对于数据标注的效率和准确性有着决定性的影响。我们需要意识到,标注不仅仅是一项重复性的劳动,更是一项需要技能和专业知识的工作。因此,我们需要持续地学习和探索,提高自身的标注能力。在这个过程中,labelme和labelimg这两款优秀的标注软件无疑是不可或缺的工具。
同时,我们也需要认识到,标注不仅仅是一种技能,更是一种责任。我们的标注数据将会被用于训练和评估各种人工智能模型。因此,我们需要严谨地对待每一项标注工作,确保数据的质量和可靠性。
最后,我想说,标注是一项具有挑战性和成就感的工作。每一次标注的进步和提高,都是对自己能力的认可和鼓励。让我们一起努力,探索标注的无限可能!(哈哈,说的有点大了)